• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Y. Watanobe, M. M. Rahman, M. F. I. Amin and R. Kabir, “Identifying algorithm in program code based on structural features using CNN classification model,” Applied Intelligence, vol. 53, no. 10, pp. 12210-12236, 2023. DOI:10.1007/s10489-022-04078-yDOI
2 
Y. Oda et al., “Learning to generate pseudo-code from source code using statistical machine translation,” 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 574-584, 2015. DOI:10.1109/ASE.2015.36DOI
3 
R. Russell et al., “Automated vulnerability detection in source code using deep representation learning,” 2018 17th IEEE international conference on machine learning and applications (ICMLA), pp. 757-762, 2018. DOI:10.1109/ICMLA.2018.00120DOI
4 
A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language model for code,” 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 1, pp. 858-868, 2015. DOI:10.1109/ICSE.2015.336DOI
5 
S. T. Shi, et al., “Automatic code review by learning the revision of source code,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 4910-4917, 2019. DOI:10.1609/aaai.v33i01.33014910DOI
6 
K. Alrashedy, et al., “Scc++: Predicting the programming language of questions and snippets of stack overflow,” Journal of Systems and Software, vol. 162, pp. 110505, 2020. DOI:10.1016/j.jss.2019.110505DOI
7 
J. F. Baquero, et al., “Predicting the programming language: Extracting knowledge from stack overflow posts,” In: Advances in Computing: 12th Colombian Conference, CCC2017, Springer International Pulishing, vol. 735, pp. 199-210, 2017. DIO:10.1007/978-3-319-66562-7_15DOI
8 
J. N. Khasnabish, M. Sodhi, J. Deshmukh and H. Srinivasaraghavan, “Detecting programming language from source code using bayesian learning techniques,” Machine Learning and Data Mining in Pattern Recognition: 10th International Conference, Springer International Publishing, vol. 8556, pp. 513-522, 2014. DOI:10.1007/978-3-319-08979-9_39DOI
9 
E. O. Kiyak, A. B. Cengiz, K. U. Birant and D. birant, “Comparison of image-based and text-based source code classification using deep learning,” SN Computer Science, vol. 1, no. 5, pp. 266, 2020. DOI:10.1007/s42979-020-00281-1DOI
10 
S. Gilda, “Source code classification using Neural Networks,” 2017 14th international joint conference on computer science and software engineering (JCSSE), IEEE, pp. 1-6, 2017. DOI:10.1109/JCSSE.2017.8025917DOI
11 
R. Puri, et al., “Codenet: A large-scale ai for code dataset for learning a diversity of coding tasks,” arXiv preprint arXiv:2105.12655, 2021.DOI