• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Grand View Research, “Virtual Reality (VR) in Healthcare Market Size, Share & Trends Analysis Report by Component, by Application (Rehabilitation, Pain Management), by End-Use, by Region, and Segment Forecasts, 2023–2030,” Grand View Research, 2023. Available at: https://www.grandviewresearch.com/industry-analysis/virtual-reality-vr-healthcare-market-reportURL
2 
A. Siani and S. A. Marley, “Impact of the recreational use of virtual reality on physical and mental wellbeing during the Covid-19 lockdown,” Health and Technology, vol. 11, no. 5, pp. 1105–1117, 2021. DOI:10.1007/s12553-021-00528-8DOI
3 
M. Bittner and J. van Gemert, “Real-time webcam heart-rate and variability estimation with clean ground truth for evaluation,” Applied Sciences, vol. 10, no. 23, pp. 8630, 2020. DOI:10.3390/app10238630DOI
4 
A. Goyal, S. Singh, D. Vir and D. Pershad, “Automation of Stress Recognition Using Subjective or Objective Measures,” Psychological Studies, vol. 61, pp. 348–364, Nov. 2016. DOI:10.1007/s12646-016-0379-1DOI
5 
B. Braun, D. McDuff and C. Holz, “How Suboptimal is Training rPPG Models with Videos and Targets from Different Body Sites?,” arXiv preprint arXiv:2403.10582, 2024. DOI:10.48550/arXiv.2403.10582DOI
6 
Z. Jiang, G. Zhao, X. Li and Y. Pang, “Remote Photoplethy- smography Signal Measurement from Facial Videos Using Spatio-Temporal Networks,” Sensors, vol. 21, no. 18, pp. 6296, Sep. 2021. DOI:10.48550/arXiv.1905.02419DOI
7 
S. Ghosh, D. Ghosh and A. Konar, “State-of-the-Art of Stress Prediction from Heart Rate Variability Using Artificial Intelligence,” Cognitive Computation, vol. 15, pp. 1759–1775, 2023. DOI:10.1007/s12559-023-10200-0DOI
8 
A. Bisiaux, F. Tilquin, Y. Le Guillou and G. Carrault, “Validity of Ultra-Short-Term HRV Analysis Using PPG—A Preliminary Study,” Sensors, vol. 22, no. 20, pp. 7995, Oct. 2022. DOI:10.3390/s22207995DOI
9 
S. Bobbia, R. Macwan, Y. Benezeth, A. Mansouri and J. Dubois, “Unsupervised skin tissue segmentation for remote photoplethysmography,” Pattern Recognition Letters, vol. 118, pp. 32–40, 2017. DOI:10.1016/j.patrec.2017.10.017DOI
10 
K. Zhou, S. Krause, T. Blocher and W. Stork, “Enhancing Remote-PPG Pulse Extraction in Disturbance Scenarios Utilizing Spectral Characteristics,” in Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, pp. 1130–1138, Jun. 2020. DOI:10.1109/CVPRW50498.2020.00148DOI
11 
D.-Y. Kim, K. Lee, and C.-B. Shim, “Assessment of ROI Selection for Facial Video-Based rPPG,” Sensors, vol. 21, no. 23, pp. 7923, 2021. DOI:10.3390/s21237923DOI
12 
A. K. Gupta, R. Kumar, L. Birla and P. Gupta, “RADIANT: Better rPPG Estimation Using Signal Embeddings and Transformer,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, pp. 4965–4975, Jan. 2023. DOI:10.1109/WACV56688.2023.00495DOI
13 
K. Zhou, S. Krause, T. Blocher and W. Stork, “Enhancing Remote-PPG Pulse Extraction in Disturbance Scenarios Utilizing Spectral Characteristics,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, pp. 1130–1138, Jun. 2020. DOI:10.1109/CVPRW50498.2020.00148DOI
14 
G. C. B. Huang and K. S. Nayak, “Heart Rate Variability and Frequency Domain Analysis Using FFT,” Journal of Electrocardiology, vol. 25, pp. 104–110, 1992. DOI:10.1016/0022-0736(92)90211-TDOI
15 
H. G. Kim, E. J. Cheon, D. S. Bai, Y. H. Lee and B. H. Koo, “Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature,” Psychiatry Investigation, vol. 15, no. 3, pp. 235–245, 2018. DOI:10.30773/pi.2017.08.17.DOI
16 
F. Shaffer and J. P. Ginsberg, “An Overview of Heart Rate Variability Metrics and Norms,” Frontiers in Public Health, vol. 5, pp. 258, 2017. DOI: 10.3389/fpubh.2017.00258DOI