• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
H. Tak, M. Todisco, X. Wang, J.-w. Jung, J. Yamagishi and N. Evans, “Automatic speaker verification spoofing and deepfake detection using wav2vec 2.0 and data augmentation,” 2022. arXiv preprint arXiv:2202.12233DOI
2 
S. Novoselov, G. Lavrentyeva, A. Avdeeva, V. Volokhov and Aleksei Gusev, “Robust speaker recognition with transformers using wav2vec 2.0.,” 2022. arXiv preprint arXiv:2203.15095DOI
3 
A. Mukasheva, D. Koishiyeva, Z. Suimenbayeva, S. Rakhmetulayeva, A. Bolshibayeva and G. Sadikova, “Comparison Evaluation of Unet-Based Models with Noise Augmentation for Breast Cancer Segmentation on Ultrasound Images,” Eastern-European Journal of Enterprise Technologies, vol. 125, no. 9, 2023 10.15587/1729-4061.2023.289044DOI
4 
N. Vaessen and D. A. Van Leeuwen, “Fine-tuning wav2vec2 for speaker recognition,” In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 7967-7971, 2022. 10.1109/ICASSP43922.2022.9746952DOI
5 
K. Li, C. Baird and D. Lin, “Defend data poisoning attacks on voice authentication,” IEEE Transactions on Dependable and Secure Computing, vol. 21, no. 4, pp. 1754-1769, 2023. 10.1109/TDSC.2023.3289446DOI
6 
J. W. Lee, E. Kim, J. Koo and K. Lee, “Representation selective self-distillation and wav2vec 2.0 feature exploration for spoof-aware speaker verification,” 2022. Preprint, Available at: arXiv:2204.02639DOI
7 
S. Salturk and N. Kahraman, “Deep learning-powered multimodal biometric authentication: integrating dynamic signatures and facial data for enhanced online security,” Neural Computing and Applications, vol. 36, no. 19, pp. 11311-11322, 2024. 10.1007/s00521-024-09690-2DOI
8 
K. Merit and M. Beladgham, “Enhancing Biometric Security with Bimodal Deep Learning and Feature-level Fusion of Facial and Voice Data,” Journal of Telecommunications and Information Technology, vol. 98, no. 4, pp. 31-42, 2024. 10.26636/jtit.2024.4.1754DOI
9 
Y. Elbayoumi (2024), “Applying machine learning and deep learning in the voice biometrics technology,” Master’s Thesis, Bahcesehir University, 22 January 2024. https://www.researchgate.net/publication/380131916DOI
10 
K. Koutini, H. Eghbal-zadeh and G. Widmer, “Receptive field regularization techniques for audio classification and tagging with deep convolutional neural networks,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 29, pp. 1987-2000, 2021. 10.1109/TASLP.2021.3082307DOI
11 
T. N. Sainath, O. Vinyals, A. Senior and H. Sak, “Convolutional, long short-term memory, fully connected deep neural networks,” In 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP) IEEE, pp. 4580-4584. 2015. 10.1109/ICASSP.2015.7178838DOI
12 
G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang and W. Xu, “Dolphinattack: Inaudible voice commands,” In Proceedings of the 2017 ACM SIGSAC conference on computer and communications security, IEEE, pp. 103-117. 2017. 10.1145/3133956.3134052DOI
13 
A. Mohamed, H.-Y. Lee, L. Borgholt, J. D. Havtorn, J. Edin, C. Igel, K. Kirchhoff, et al., “Self-supervised speech representation learning: A review,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 6, pp. 1179-1210, 2022. 10.1109/JSTSP.2022.3207050DOI
14 
X. Liu, X. Wang, M. Sahidullah, J. Patino, H. Delgado, T. Kinnunen, M. Todisco, et al., “Asvspoof 2021: Towards spoofed and deepfake speech detection in the wild,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 31, pp. 2507-2522, 2023. 10.1109/TASLP.2023.3285283DOI
15 
S. Tuli and N. K. Jha, “EdgeTran: Device-aware co-search of transformers for efficient inference on mobile edge platforms,” IEEE Transactions on Mobile Computing, vol. 23, no. 6, pp. 7012-7029, 2023. 10.1109/TMC.2023.3328287DOI
16 
S. Dhar, J. Guo, J. Liu, S. Tripathi, U. Kurup and M. Shah, “A survey of on-device machine learning: An algorithms and learning theory perspective,” ACM Transactions on Internet of Things, vol. 2, no. 3, pp. 1-49, 2021. 10.1145/3450494DOI
17 
E. Seitzhan, A. Bissembayev, A. Mukasheva, H. S. Park and J. W. Kang, “A Study on the Optimization Efficiency of Software Development with Low-Code Platforms,” Transactions of the Korean Institute of Electrical Engineers, vol. 74, no. 5, pp. 957-968, 2025. 10.5370/KIEE.2025.74.5.957DOI
18 
L. H. X. Ng, A. C. M. Lim, A. X. W. Lim and A. Taeihagh, “Digital ethics for biometric applications in a smart city,” Digital Government: Research and Practice, vol. 4, no. 4, pp. 1-6, 2023. 10.1145/3630261DOI
19 
A. Koenecke, A. Nam, E. Lake, J. Nudell, M. Quartey, Z. Mengesha, C. Toups, J. R. Rickford, D. Jurafsky and S. Goel, “Racial disparities in automated speech recognition,” Proceedings of the national academy of sciences, vol. 117, no. 14, pp. 7684-7689, 2020. 10.1073/pnas.1915768117DOI
20 
K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, et al., “Towards federated learning at scale: System design,” Proceedings of machine learning and systems, vol. 1, pp. 374-388, 2019. https://proceedings.mlsys.org/paper_files/paper/2019/file/7b770da633baf74895be22a8807f1a8f-Paper.pdfURL
21 
P. Voigt and A. Von dem Bussche, “The EU General Data Protection Regulation (GDPR),” A Practical Guide, 1st ed., Cham: Springer International Publishing, 2017. 10.1007/978-3-319-57959-7DOI
22 
S. Wachter, B. Mittelstadt and C. Russell, “Counterfactual explanations without opening the black box: Automated decisions and the GDPR,” Harvard Journal of Law & Technology, vol. 31, no. 2, pp. 841-887, 2017. 10.2139/ssrn.3063289DOI