• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Y. Ding, Z. P. Cano, A. Yu, J. Lu, Z. Chen, 2019, Automotive Li-Ion Batteries: Current Status and Future Perspectives, Electrochemical Energy Reviews, Vol. 2, No. 1, pp. 1-28DOI
2 
H. J. Jang, T. S. Song, J. Y. Kim, S. J. Kim, T. H. Jang, 2019, Study on Analysis of Fire Factor and Development Direction of Standard/safety Requirement to Keep Safety for Energy Storage System (ESS), Journal of Standards, Certification and Safety, Vol. 3, No. 9, pp. 25-49Google Search
3 
Yuhong Chen, 2022, Recent advances of overcharge investigation of lithium-ion batteries, Ionics, Vol. 28, No. 2, pp. 495-514DOI
4 
S. Yin, J. Liu, B. Cong, 2023, Review of Thermal Runaway Monitoring, Warning and Protection Technologies for Lithium-Ion Batteries, Processes, Vol. 11, No. 8, pp. 2345DOI
5 
T. Rahman, A. Talal, 2024, Exploring Lithium-Ion Battery Degradation: A Concise Review of Critical Factors, Impacts, Data-Driven Degradation Estimation Techniques, and Sustainable Directions for Energy Storage Systems, Batteries, Vol. 10, No. 7, pp. 220DOI
6 
E. Kim, 2023, Data-Driven Methods for Predicting the State of Health, State of Charge, and Remaining Useful Life of Li-Ion Batteries: A Comprehensive Review, International Journal of Precision Engineering and Manufacturing, Vol. 24, No. 7, pp. 1281-1304DOI
7 
S. Park, G. Song, S. Park, 2020, A Study on the Parameters Estimation for SOC and SOH of the Battery, Journal of the Korean Society of Industry Convergence, Vol. 23, No. 5, pp. 853-863DOI
8 
HG. Schweiger, 2010, Comparison of Several Methods for Determining the Internal Resistance of Lithium Ion Cells, Sensors, Vol. 10, No. 6, pp. 5604-5625DOI
9 
Y. Koc, U. E. Doğru, R. A. Bilir, 2022, Evaluation of Internal Resistance Methods for Tracking Battery State of Health, pp. 112-116DOI
10 
G-G Park, B-C Park, 2020, Real-time Battery Internal Resistance Measurement Method, pp. 218-219Google Search
11 
J. Vetter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, 2005, Ageing mechanisms in lithium-ion batteries, Journal of Power Sources, Vol. 147, No. 1-2, pp. 269-281DOI
12 
S. Lee, M. Park, 2014, Battery State of Charge Estimation Considering the Battery Aging, Journal of IKEEE, Vol. 18, No. 3, pp. 298-304DOI
13 
P. Keil, 2016, Calendar Aging of Lithium-Ion Batteries, Journal of The Electrochemical Society, Vol. 163, No. 9, pp. 1872-1880DOI
14 
X. Zhang, J. Hou, Z. Wang, Y. Jiang, 2022, Study of SOC Estimation by the Ampere-Hour Integral Method with Capacity Correction Based on LSTM, Batteries, Vol. 8, No. 10DOI
15 
Y. Guo, D. Yang, Y. Zhang, L. Wang, K. Wang, 2022, Online Estimation of SOH For Lithium-Ion Battery Based on SSA-Elman Neural Network, Protection and Control of Modern Power Systems, Vol. 7, No. 3, pp. 1-17DOI
16 
J. Jung, M. Lim, N. Kim, H. Kim, D. Rho, 2023, A Study on Assessment of Internal Resistance for Repurposing using Middle & Large sized Batteries, The Transactions of the Korean Institute of Electrical Engineers, Vol. 72, No. 6, pp. 717-723Google Search
17 
P. J. Kollmeyer, 2018, Panasonic 18650PF Li-ion Battery DataGoogle Search
18 
P. J. Kollmeyer, 2015, Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck including Hybrid Energy StorageGoogle Search
19 
E. Chemali, P. J. Kollmeyer, M. Preindl, R. Ahmed, A. Emadi, 2018, Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-Ion Batteries, IEEE Transactions on Industrial Electronics, Vol. 65, No. 8, pp. 6730-6739DOI
20 
D. Chicco, M. J. Warrens, G. Jurman, 2021, The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, PeerJ Computer Science, Vol. 7DOI