• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (CONNECTVALUE Co., Ltd., Korea E-mail: winbaram@outlook.com)
  2. (DTONIC Co., Ltd., Korea E-mail: bespring_lim@naver.com)
  3. (College of Humanities and Arts, Daejin University, Korea E-mail: jykim629@daejin.ac.kr)



CycleGAN Turbo, Data Augmentation, Object Detection, YOLO v9, Style Transfer, GAN, Generative AI

1. ์„œ ๋ก 

์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ๊ฐ์ฒด ํƒ์ง€(Object Detection) ๊ธฐ์ˆ ์€ ์˜์ƒ ์ดํ•ด ๋ถ„์•ผ์—์„œ ๋น„์•ฝ์ ์ธ ๋ฐœ์ „์„ ์ด๋ฃจ๋ฉฐ, ์ž์œจ์ฃผํ–‰, ๋ณด์•ˆ ๊ฐ์‹œ, ๊ตํ†ต ๊ด€๋ฆฌ ๋“ฑ ๋‹ค์–‘ํ•œ ์‘์šฉ ๋ถ„์•ผ์—์„œ ํ•ต์‹ฌ ๊ธฐ์ˆ ๋กœ ์ž๋ฆฌ ์žก๊ณ  ์žˆ๋‹ค[1, 2]. ํŠนํžˆ YOLO(You Only Look Once) ์‹œ๋ฆฌ์ฆˆ, Faster R-CNN, SSD(Single Shot MultiBox Detector) ๋“ฑ์˜ ๋ชจ๋ธ์€ ์‹ค์‹œ๊ฐ„ ํƒ์ง€ ์„ฑ๋Šฅ๊ณผ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋™์‹œ์— ๋‹ฌ์„ฑํ•˜๋ฉฐ ๊ฐ์ฒด ์ธ์‹์˜ ์ƒˆ๋กœ์šด ํ‘œ์ค€์„ ์ œ์‹œํ•˜์˜€๋‹ค[3-7]. ์ด๋Ÿฌํ•œ ๊ธฐ์ˆ  ๋ฐœ์ „์€ ๋„์‹œ ๋‚ด ๊ฐ์ข… ์˜์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ตํ†ต ํ๋ฆ„ ๋ถ„์„ ๋ฐ ์ด์ƒ ์ƒํ™ฉ ๊ฐ์ง€์˜ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ, ์ตœ๊ทผ ์Šค๋งˆํŠธ์‹œํ‹ฐ์™€ ์ง€๋Šฅํ˜• ๊ตํ†ต ์‹œ์Šคํ…œ(ITS)์˜ ๋ฐœ์ „๊ณผ ํ•จ๊ป˜, ๋„์‹œ ๋‚ด ๊ตํ†ต ํ๋ฆ„์„ ์ •๋ฐ€ํ•˜๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ ๋“ค์ด ๋„์ž…๋˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ CCTV ๊ธฐ๋ฐ˜์˜ ์‹ค์‹œ๊ฐ„ ๊ตํ†ต ๋ชจ๋‹ˆํ„ฐ๋ง์€ ์ฐจ๋Ÿ‰ ๋ฐ ๋ณดํ–‰์ž์˜ ์›€์ง์ž„์„ ํŒŒ์•…ํ•˜์—ฌ ์‚ฌ๊ณ  ๊ฐ์ง€, ์‹ ํ˜ธ ์ œ์–ด, ๊ตํ†ต ๋ถ„์‚ฐ ๋“ฑ ์—ฌ๋Ÿฌ ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ™˜๊ฒฝ์—์„œ๋Š” ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•œ ๊ฐ์ฒด ์ธ์‹ ๊ธฐ์ˆ ์ด ํ•„์ˆ˜์ ์ด๋ฉฐ, ๋„๋กœ ๊ตํ†ต ๋„๋ฉ”์ธ์—์„œ ์‹ค์‹œ๊ฐ„์„ฑ ํ™•๋ณด์™€ ๊ฒ€์ถœ ์ •ํ™•๋„ ํ–ฅ์ƒ์„ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๊ฐ์ฒด ํƒ์ง€ ๊ธฐ๋ฒ•๋“ค์ด ์ง€์†์ ์œผ๋กœ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค[8]. ์ตœ๊ทผ ๋“ฑ์žฅํ•œ YOLO ๊ธฐ๋ฐ˜์˜ ๋‹จ์ผ ๋‹จ๊ณ„ ๊ฐ์ฒด ๊ฒ€์ถœ ๋ชจ๋ธ๋“ค์€ ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ ์„ฑ๋Šฅ๊ณผ ์ •ํ™•๋„๋ฅผ ๋ชจ๋‘ ๊ฐ–์ถ”์–ด ์‹ค์ œ ๋„๋กœ ํ™˜๊ฒฝ์— ๋„๋ฆฌ ์ ์šฉ๋˜๊ณ  ์žˆ๋‹ค[9-12]. ํ•˜์ง€๋งŒ ํญ์šฐ, ์•ˆ๊ฐœ, ์ €์กฐ๋„์™€ ๊ฐ™์€ ์•…์ฒœํ›„ ์กฐ๊ฑด์—์„œ๋Š” ์˜์ƒ ํ’ˆ์งˆ ์ €ํ•˜๋กœ ์ธํ•ด ๊ฐ์ฒด ํƒ์ง€ ๋ฐ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์ด ๊ธ‰๊ฒฉํžˆ ๋–จ์–ด์ง€๋Š” ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๋“ค์— ๋”ฐ๋ฅด๋ฉด, ์ด์™€ ๊ฐ™์€ ๊ธฐ์ƒ ์กฐ๊ฑด์—์„œ๋Š” ๊ฐ์ฒด ํƒ์ง€ ๋ฐ ๋ถ„๋ฅ˜ ์ •ํ™•๋„(mAP)๊ฐ€ ํ‰์ƒ์‹œ ๋Œ€๋น„ 20% ๊ฐ€๊นŒ์ด ๊ฐ์†Œํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์œผ๋ฉฐ, ํŠนํžˆ ์•ผ๊ฐ„ยท๋น„ยท์•ˆ๊ฐœ๊ฐ€ ์ค‘์ฒฉ๋˜๋Š” ํ™˜๊ฒฝ์—์„œ๋Š” ์„ฑ๋Šฅ์ด ๊ทน๋‹จ์ ์œผ๋กœ ์ €ํ•˜๋˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค[13, 14]. ๋Œ€ํ‘œ์ ์œผ๋กœ, Sakaridis et al.(2021)๋Š” ์•…์ฒœํ›„ ํ™˜๊ฒฝ์„ ์ดฌ์˜ํ•œ ACDC (Adverse Con -ditions Dataset with Correspondences) ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์–‘ํ•œ ๊ฐ์ฒด ํƒ์ง€ ๋ชจ๋ธ์„ ์‹คํ—˜ํ•œ ๊ฒฐ๊ณผ, ์•ผ๊ฐ„ ๋ฐ ์•ˆ๊ฐœ ์กฐ๊ฑด์—์„œ ์„ฑ๋Šฅ ์ €ํ•˜๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค๊ณ  ๋ณด๊ณ ํ•˜์˜€๋‹ค[13]. ๋˜ํ•œ, Dai et al. (2018)๋Š” ์กฐ๋„ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ฃผ๊ฐ„ ๋ฐ ์•ผ๊ฐ„ ๋„๋ฉ”์ธ ๊ฐ„ ๊ฒฉ์ฐจ, ์•ผ๊ฐ„ ๋„๋ฉ”์ธ ํŠน์„ฑ ๋ฏธ๋ฐ˜์˜์ด ๊ฒ€์ถœ ๋ชจ๋ธ ์„ฑ๋Šฅ ์ €ํ•˜์˜ ์ฃผ์š” ์›์ธ์ž„์„ ์ง€์ ํ•˜์˜€๋‹ค[14]. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋Œ€๋ถ€๋ถ„์˜ ๊ณต๊ฐœ ๊ตํ†ต ๊ฐ์ฒด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์ •์ƒ์ ์ธ ์ฃผ๊ฐ„/๋ง‘์€ ๋‚ ์”จ ์กฐ๊ฑด์— ํŽธ์ค‘๋˜์–ด ์žˆ์œผ๋ฉฐ, ์•…์ฒœํ›„ ์ƒํ™ฉ์˜ ์ƒ˜ํ”Œ์€ ํ˜„์ €ํžˆ ๋ถ€์กฑํ•˜์—ฌ, ๋ชจ๋ธ ํ•™์Šต ์‹œ ํŽธํ–ฅ(bias)์ด ๋ฐœ์ƒํ•˜๊ณ  ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์ด ์ €ํ•˜๋˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๊ธฐ์กด์—๋Š” ์ด๋Ÿฌํ•œ ํŽธํ–ฅ์„ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ๊ธฐยท์ฑ„๋„ ์กฐ์ • ๋˜๋Š” ํฌ๋กญยทํ”Œ๋ฆฝ๊ณผ ๊ฐ™์€ ์ €์ˆ˜์ค€ ๊ธฐ๋ฐ˜์˜ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ๊ธฐ๋ฒ•์ด ํ™œ์šฉ๋˜์–ด ์™”์œผ๋‚˜, ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์‹ค์ œ ์•…์ฒœํ›„ ํŠน์œ ์˜ ์‹œ๊ฐ์  ํŠน์„ฑ โ€” ์˜ˆ๋ฅผ ๋“ค์–ด ๋ฌผ๋ฐฉ์šธ ํ”์ , ์•ˆ๊ฐœ ๋ฒ ์ผ, ์•ผ๊ฐ„ ํ—ค๋“œ๋ผ์ดํŠธ ๋ฒˆ์ง ๋“ฑ โ€” ์„ ์ถฉ๋ถ„ํžˆ ์žฌํ˜„ํ•˜์ง€ ๋ชปํ•˜๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ํ•™์Šต๋œ ๋ชจ๋ธ๊ณผ ์‹ค์ œ ํ™˜๊ฒฝ ๊ฐ„์˜ ๋„๋ฉ”์ธ ๊ฐ„๊ฒฉ(domain gap)์ด ๋‚จ์•„, ์„ฑ๋Šฅ ๊ฐœ์„ ์ด ์ œํ•œ๋˜๋Š” ๋ฌธ์ œ๊ฐ€ ์กด์žฌํ•œ๋‹ค.

๋ณธ ์—ฐ๊ตฌ๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž, ์ „ํ†ต์ ์ธ ์ฆ๊ฐ• ๋ฐฉ์‹์ด ์•„๋‹Œ ์Šคํƒ€์ผ ์ „์ด ๊ธฐ๋ฐ˜์˜ ์ฆ๊ฐ• ๊ธฐ๋ฒ•์„ ๋„์ž…ํ•˜์—ฌ ์•…์ฒœํ›„ ์กฐ๊ฑด์— ์ ํ•ฉํ•œ ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์ด๋ฅผ ๊ฐ์ฒด ๊ฒ€์ถœ ๋ชจ๋ธ์˜ ํ•™์Šต์— ํ™œ์šฉํ•˜๋Š” ๋ฐฉ์•ˆ์„ ์ œ์•ˆํ•œ๋‹ค. ๋” ๋‚˜์•„๊ฐ€, ์‹ค์ œ ์•…์ฒœํ›„ ์ด๋ฏธ์ง€์™€ ์ฆ๊ฐ•๋œ ์ด๋ฏธ์ง€์˜ ํ˜ผํ•ฉ ํ•™์Šต์ด ๋‹จ์ผ ์†Œ์Šค ํ•™์Šต ๋Œ€๋น„ ํšจ๊ณผ์ ์ธ์ง€ ๊ฒ€์ฆํ•˜๊ณ , ์‹ค์‹œ๊ฐ„ ์‘์šฉ์ด ๊ฐ€๋Šฅํ•œ ์ฆ๊ฐ•ยท๊ฒ€์ถœ ํŒŒ์ดํ”„๋ผ์ธ์˜ ์„ค๊ณ„ ์›์น™์„ ์ œ์‹œํ•จ์œผ๋กœ์จ ํ–ฅํ›„ ๋„์‹ฌ ๊ตํ†ต ๊ด€์ œ ์‹œ์Šคํ…œ์˜ ์‹ ๋ขฐ์„ฑ๊ณผ ์ง€์† ๊ฐ€๋Šฅ์„ฑ์„ ๋†’์ด๋Š” ๋ฐ ๊ธฐ์—ฌํ•˜๊ณ ์ž ํ•œ๋‹ค.

2. ๊ด€๋ จ ์—ฐ๊ตฌ

2.1 ๋‹จ์ˆœ ํ”ฝ์…€ ๋‹จ์œ„์˜ ์ „ํ†ต์  ์ฆ๊ฐ• ๊ธฐ๋ฒ•์— ๊ด€ํ•œ ์—ฐ๊ตฌ

๋ฐ์ดํ„ฐ๊ฐ€ ์ œํ•œ์ ์ธ ์ƒํ™ฉ์—์„œ, ํ•™์Šต ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด ํฌ๋กญ(crop), ํšŒ์ „(rotation), ๋ฐ๊ธฐ(brightness) ๋ณ€ํ™”, ๋ธ”๋Ÿฌ(blur) ์กฐ์ • ๋“ฑ์˜ ๋ณ€ํ™˜์„ ์ ์šฉํ•˜์—ฌ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ํ™•์žฅํ•˜๋Š” ๋ฐฉ์‹์€ ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š”๋ฐ ์œ ์šฉํ•˜๋‹ค๋Š” ์„ ํ–‰ ์—ฐ๊ตฌ๋“ค์ด ์กด์žฌํ•œ๋‹ค. ์˜ˆ์ปจ๋Œ€, Kumar et al. (2025)๋Š” blur, rotation, color jitter ๋“ฑ์˜ ๋ณ€ํ˜•์ด Caltech-101 ๊ธฐ๋ฐ˜ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•œ ๊ฒƒ์„ ๋ณด๊ณ ํ•˜์˜€๋‹ค[15]. ๋˜ํ•œ Goceri, E. et al.(2023)์˜ ์—ฐ๊ตฌ์— ๋”ฐ๋ฅด๋ฉด, ์˜๋ฃŒ ์˜์ƒ ๋ถ„๋ฅ˜ ์‹คํ—˜์—์„œ rotation, translation, shearing, color shifting ๋“ฑ๊ณผ ๊ฐ™์€ ๊ธฐํ•˜ํ•™์  ๋ณ€ํ™˜ ๊ธฐ๋ฐ˜ ์ฆ๊ฐ• (Transformation-based augmentation)์ด ์ด๋ฏธ์ง€ ์ธ์‹ ์„ฑ๋Šฅ์„ ๋†’์ด๋Š”๋ฐ ํšจ๊ณผ์ ์ธ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ๊ตฌํ˜„์ด ๊ฐ„๋‹จํ•˜๋ฉด์„œ๋„ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘์„ฑ์„ ํ™•๋ณดํ•˜์—ฌ, ๋ณต์žกํ•œ ํ•ฉ์„ฑ ๋ชจ๋ธ(GAN ๊ธฐ๋ฐ˜ ์ฆ๊ฐ•)๋ณด๋‹ค ์•ˆ์ •์ ์œผ๋กœ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค[16]. ์ด๋Ÿฌํ•œ ์„ ํ–‰ ์—ฐ๊ตฌ๋“ค์€ ํฌ๋กญ, ํšŒ์ „, ๋ฐ๊ธฐ/๋ธ”๋Ÿฌ ์กฐ์ ˆ ๋“ฑ์˜ ๋‹จ์ˆœํ•œ ํ”ฝ์…€ ๋‹จ์œ„์˜ ์ „ํ†ต์  ์ฆ๊ฐ• ๊ธฐ๋ฒ•์ด ๋‹จ์ˆœํ•œ ์ด๋ฏธ์ง€ ์ธ์‹ ๋ชจ๋ธ์˜ ํ•™์Šต์—์„œ๋„ ํšจ๊ณผ์ ์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ทผ๊ฑฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค.

2.2 ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ์˜ ์ฆ๊ฐ• ์—ฐ๊ตฌ

๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ๊ฐ์ฒด ๊ฒ€์ถœ ์„ฑ๋Šฅ์€ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘์„ฑ๊ณผ ํ’ˆ์งˆ์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ๋Š” ๋‹ค์–‘ํ•œ ์กฐ๊ฑด(์กฐ๋ช…, ๋‚ ์”จ, ๋…ธ์ด์ฆˆ ๋“ฑ)์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์ด ์–ด๋ ต๊ณ  ๋น„์šฉ์ด ๋งŽ์ด ๋“œ๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์–ด, ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•(Data Augmentation) ๊ธฐ๋ฒ•์ด ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค.

ํŠนํžˆ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ๋Š” ํ™˜์ž์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•œ์ •์ ์ด๊ฑฐ๋‚˜ ํŠน์ • ์งˆ๋ณ‘์˜ ์‚ฌ๋ก€ ์ˆ˜๊ฐ€ ์ ์–ด, ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต์„ ์œ„ํ•œ ์ถฉ๋ถ„ํ•œ ํ‘œ๋ณธ์„ ํ™•๋ณดํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด GAN ๊ธฐ๋ฐ˜์˜ ์ƒ์„ฑํ˜• ๋ชจ๋ธ์„ ํ™œ์šฉํ•œ ํ•ฉ์„ฑ ์ด๋ฏธ์ง€ ๊ธฐ๋ฐ˜ ์ฆ๊ฐ•์ด ํšจ๊ณผ์ ์œผ๋กœ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, Frid-Adar et al. (2018)์€ CT ์˜์ƒ์—์„œ ๊ฐ„ ๊ฒฐ์ ˆ์„ ๊ฒ€์ถœํ•˜๊ธฐ ์œ„ํ•ด GAN์„ ํ™œ์šฉํ•ด ํ•ฉ์„ฑ ๋ณ‘๋ณ€ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์ด๋ฅผ ํ•™์Šต์— ํ™œ์šฉํ•จ์œผ๋กœ์จ ๊ฐ์ฒด ๊ฒ€์ถœ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚จ ๋ฐ” ์žˆ๋‹ค[17]. ๋˜ํ•œ, Chuquicusma et al. (2018)์€ ํ๊ฒฐ์ ˆ ๋ฐ์ดํ„ฐ๋ฅผ GAN์œผ๋กœ ์ฆ๊ฐ•ํ•˜์—ฌ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘์„ฑ์„ ํ™•๋ณดํ•˜๊ณ , ๊ฒ€์ถœ ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜์˜€๋‹ค[18]. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค์€ ์ฆ๊ฐ• ๊ธฐ๋ฐ˜ ํ•™์Šต์ด ์ œํ•œ๋œ ๋ฐ์ดํ„ฐ ํ™˜๊ฒฝ์—์„œ ๊ฐ์ฒด ๊ฒ€์ถœ ์„ฑ๋Šฅ์„ ํšจ๊ณผ์ ์œผ๋กœ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.

2.3 ๋„๋กœ ๊ตํ†ต ๋ถ„์•ผ์—์„œ์˜ ์ฆ๊ฐ• ์—ฐ๊ตฌ

์˜๋ฃŒ ์ด๋ฏธ์ง€์—์„œ ์‹œ์ž‘๋œ ์ด์™€ ๊ฐ™์€ ์ฆ๊ฐ• ์ ‘๊ทผ๋ฒ•์€ ์ดํ›„ ์ผ๋ฐ˜ ์ด๋ฏธ์ง€ ์˜์—ญ์œผ๋กœ ํ™•์žฅ๋˜์–ด, ๋ณต์žกํ•œ ํ™˜๊ฒฝ์—์„œ๋„ ๊ฐ•๊ฑดํ•œ ๊ฐ์ฒด ๊ฒ€์ถœ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๋กœ ์ด์–ด์ง€๊ณ  ์žˆ๋‹ค.์ตœ๊ทผ ๋ช‡๋ช‡ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‚ฎ ์‹œ๊ฐ„๋Œ€ ๊ฐ•์šฐ ์กฐ๊ฑด์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•ด GAN ๊ณ„์—ด ๋ชจ๋ธ์„ ํ™œ์šฉํ•œ ์ด๋ฏธ์ง€ ์ฆ๊ฐ• ๊ธฐ๋ฒ•์„ ๋„๋กœ ๊ฐ์ฒด ๊ฒ€์ถœ์— ์ ์šฉํ•˜๊ณ  ์žˆ๋‹ค. ์˜ˆ์ปจ๋Œ€ ๊น€์†”๋žŒ(2023)์€ ์ฃผ๊ฐ„ ๋„๋กœ ์˜์ƒ ๋ฐ์ดํ„ฐ์—์„œ ์‹ค์ œ ๋น„๊ฐ€ ์˜ค๋Š” ์ด๋ฏธ์ง€ ์„ธํŠธ์™€ CycleGAN์„ ํ†ตํ•ด ์ƒ์„ฑํ•œ ์ฆ๊ฐ•๋œ ๊ฐ•์šฐ ์ด๋ฏธ์ง€๋ฅผ ๊ฐ๊ฐ(โ‘  ์‹ค์ œ ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ๋งŒ, โ‘ก ์ฆ๊ฐ• ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ๋งŒ, โ‘ข ์‹ค์ œ ๊ฐ•์šฐ + ์ฆ๊ฐ• ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ์˜ ํ˜ผํ•ฉ) ํ•™์Šต์— ํˆฌ์ž…ํ•˜์—ฌ YOLO v8 ๊ธฐ๋ฐ˜ ๊ฐ์ฒด ๊ฒ€์ถœ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์‹คํ—˜ํ•˜์˜€๋‹ค[19]. ๊ทธ ๊ฒฐ๊ณผ, โ‘ ๊ณผ โ‘ก ๊ตฌ์„ฑ ๋ชจ๋ธ ๊ฐ„ ๊ฒ€์ถœ ์ •ํ™•๋„ ๋ฐ ์žฌํ˜„์œจ(precision, recall)์€ ๊ฑฐ์˜ ์ฐจ์ด๊ฐ€ ์—†์—ˆ์œผ๋ฉฐ, โ‘ข ๊ตฌ์„ฑ ๋ชจ๋ธ์—์„œ๋Š” ๋‘ ๋‹จ๋… ๊ตฌ์„ฑ๋ณด๋‹ค ์†Œํญ ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์„ ํ–‰ ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ฃผ๊ฐ„ยท์–‘ํ˜ธํ•œ ์กฐ๋„ ํ™˜๊ฒฝ์— ํ•œ์ •๋˜์–ด ์žˆ์œผ๋ฉฐ, ์•ผ๊ฐ„์ด๋‚˜ ์ €์กฐ๋„ ์ƒํƒœ์—์„œ์˜ ์•…์ฒœํ›„ ๋“ฑ์˜ ๋ณตํ•ฉ ์กฐ๊ฑด์„ ๋‹ค๋ฃฌ ์—ฐ๊ตฌ๋Š” ๋“œ๋ฌผ๋‹ค. ์‹ค์ œ ์ž์œจ์ฃผํ–‰ยท์Šค๋งˆํŠธ ๊ตํ†ต ์‹œ์Šคํ…œ์ด ๋งˆ์ฃผํ•˜๋Š” ํ™˜๊ฒฝ์€ ์•ผ๊ฐ„ยท์•…์ฒœํ›„์˜ ์กฐํ•ฉ์ผ ๋•Œ ์‹œ์•ผ๊ฐ€ ํฌ๊ฒŒ ์ œํ•œ๋˜๋ฉฐ, ์ด์— ๋Œ€์‘ํ•  ๋ฐ์ดํ„ฐ ํ™•๋ณด ๋ฐ ๋ชจ๋ธ ๊ฒฌ๊ณ ์„ฑ ํ™•๋ณด๊ฐ€ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ํŠนํžˆ ์•ผ๊ฐ„ ์‹œ๊ฐ„๋Œ€์˜ ๊ฐ•์šฐยทํญ์„คยท์•ˆ๊ฐœ ๋“ฑ ๋ณตํ•ฉ ๊ธฐ์ƒ ์ƒํ™ฉ์„ ์ •๋ฐ€ํ•˜๊ฒŒ ์ฆ๊ฐ•ํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ฐ์ฒด ๊ฒ€์ถœ ์„ฑ๋Šฅ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•œ ์‚ฌ๋ก€๋Š” ๊ทน์†Œ์ˆ˜์— ๋ถˆ๊ณผํ•˜๋‹ค. ๋˜ํ•œ, ๋„๋กœ ๊ตํ†ต ๊ด€์ ์—์„œ ์•ผ๊ฐ„ ๊ฐ•์šฐ ์ด๋ฏธ์ง€์˜ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ทœ๋ชจ๋Š” ์ฃผ๊ฐ„ ๋Œ€๋น„ ํ˜„์ €ํžˆ ์ ์–ด, ํ•ด๋‹น ๋ถ„์•ผ์˜ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ์‹œ๊ธ‰ํ•˜๋‹ค.

3. ๋ณธ ๋ก 

3.1 ๋ฐ์ดํ„ฐ ์„ธํŠธ

3.1.1 ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ฐœ์š”

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž์œจ์ฃผํ–‰ ๋ฐ ์Šค๋งˆํŠธ ๊ตํ†ต ํ™˜๊ฒฝ์˜ ๊ฐ์ฒด ๊ฒ€์ถœ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด, AI Hub์—์„œ ์ œ๊ณตํ•˜๋Š” ๊ตญ๋‚ด ๋„๋กœ ๊ตํ†ต CCTV ์˜์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์˜€๋‹ค. ์ˆ˜์ง‘ ๋Œ€์ƒ์€ ์ฃผยท์•ผ๊ฐ„์„ ๋ชจ๋‘ ํฌํ•จํ•˜๋ฉฐ, ๋ง‘์€ ๋‚ ๋ฟ ์•„๋‹ˆ๋ผ ๋น„ยท๋ˆˆยท์•ˆ๊ฐœ ๋“ฑ ๋‹ค์–‘ํ•œ ์•…์ฒœํ›„ ์กฐ๊ฑด์ด ํ˜ผํ•ฉ๋œ ๋Œ€์šฉ๋Ÿ‰ ํ•™์Šต์šฉ ์ด๋ฏธ์ง€์ด๋‹ค. AI Hub๋Š” ๊ฐœ์ธ์ด๋‚˜ ์†Œ๊ทœ๋ชจ ๊ธฐ๊ด€์ด ํ™•๋ณดํ•˜๊ธฐ ์–ด๋ ค์šด ๊ทœ๋ชจ์˜ ๊ณ ํ’ˆ์งˆ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ณตํ•˜๋Š” ํ”Œ๋žซํผ์œผ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋ฅผ ํ†ตํ•ด ์•ˆ์ •์ ์ด๊ณ  ๋Œ€ํ‘œ์„ฑ ์žˆ๋Š” ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค.

๋จผ์ €, ๊ตญ๋‚ด ์‹œ๋‚ด๋„๋กœ CCTV ๋ฐ์ดํ„ฐ๋Š” ๋Œ€์ „ยท๋ถ€์ฒœยท์•ˆ์–‘ ๋“ฑ ์ฃผ์š” ๋„์‹ฌ ๊ตฌ๊ฐ„์—์„œ ์ดฌ์˜๋œ FHD(1920ร—1080) ํ•ด์ƒ๋„์˜ ์˜์ƒ์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ด 18๋งŒ์—ฌ ์žฅ์˜ ํ”„๋ ˆ์ž„์ด Bounding Box ํ˜•ํƒœ๋กœ ๋ผ๋ฒจ๋ง๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ฃผยท์•ผ๊ฐ„ ์ดฌ์˜์ด ๊ณ ๋ฃจ ํฌํ•จ๋œ๋‹ค. ํŠนํžˆ ์ „์ฒด ๋ฐ์ดํ„ฐ์˜ ์•ฝ 10%๊ฐ€ ๋น„ยท๋ˆˆยท์•ˆ๊ฐœ ๋“ฑ ์•…์ฒœํ›„ ์ƒํ™ฉ์„ ๋ฐ˜์˜ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๊ธฐ์ƒ ์กฐ๊ฑด์—์„œ์˜ ๊ฐ์ฒด ๊ฒ€์ถœ ์„ฑ๋Šฅ ํ‰๊ฐ€๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ผ๋ฒจ๋ง ํด๋ž˜์Šค๋Š” ์Šน์šฉ์ฐจ, ์†Œํ˜•๋ฒ„์Šค, ๋Œ€ํ˜•๋ฒ„์Šค, ํŠธ๋Ÿญ, ๋Œ€ํ˜• ํŠธ๋ ˆ์ผ๋Ÿฌ, ์˜คํ† ๋ฐ”์ด, ๋ณดํ–‰์ž ๋“ฑ 7๊ฐœ๋กœ ์„ธ๋ถ„ํ™”๋˜์–ด ๋„์‹ฌ ๊ตํ†ต ํ™˜๊ฒฝ์˜ ์ฃผ์š” ๊ฐ์ฒด๋ฅผ ํฌ๊ด„ํ•œ๋‹ค. ๊ทธ๋ฆผ 1์€ ๊ตญ๋‚ด ์‹œ๋‚ด๋„๋กœ CCTV ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์˜ˆ์‹œ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค[20].

๊ทธ๋ฆผ 1. ๊ตญ๋‚ด ์‹œ๋‚ด๋„๋กœ CCTV ๋ฐ์ดํ„ฐ ์„ธํŠธ ์˜ˆ์‹œ

Fig. 1. Example of Domestic Urban Road CCTV Dataset

../../Resources/kiee/KIEE.2025.74.12.2287/fig1.png

๊ตญ๋‚ด ๊ณ ์†๋„๋กœ CCTV ๋ฐ์ดํ„ฐ๋Š” ์ „๊ตญ 60๊ฐœ ๊ณ ์†๋„๋กœ ๊ตฌ๊ฐ„์—์„œ ์ˆ˜์ง‘๋œ ์ด๋ฏธ์ง€๋กœ, FHD(1920ร—1080ยท1080ร—1920)์™€ HD(1280ร— 720) ํ•ด์ƒ๋„๋ฅผ ๋ชจ๋‘ ํฌํ•จํ•œ๋‹ค. ์•ฝ 30๋งŒ ์žฅ์˜ ํ”„๋ ˆ์ž„์ด Bounding Box๋กœ ๋ผ๋ฒจ๋ง๋˜์–ด ์žˆ์œผ๋ฉฐ, ๋ง‘์Œ(์•ฝ 79.4%), ๋น„(12.6%), ์•ˆ๊ฐœ(4.5%), ๋ˆˆ(3.2%) ๋“ฑ ๊ธฐ์ƒ๋ณ„ ๋ถ„ํฌ๋ฅผ ๊ณ ๋ฃจ ๋ฐ˜์˜ํ•œ๋‹ค. ๋ผ๋ฒจ๋ง ํด๋ž˜์Šค๋Š” Car, Truck, Bus ์ด ์„ธ ๊ฐ€์ง€๋กœ ๋‹จ์ˆœํ™”๋˜์–ด ๊ณ ์†๋„๋กœ ์ฃผํ–‰ ํ™˜๊ฒฝ์—์„œ ์ฃผ์š” ์ฐจ๋Ÿ‰ ์œ ํ˜• ๊ฒ€์ถœ์— ์ตœ์ ํ™”๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ์€ ์กฐ๋ช…ยท๊ธฐ์ƒ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๋ชจ๋ธ์˜ ๊ฒฌ๊ณ ์„ฑ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๋Š” ๋ฐ ์ ํ•ฉํ•˜๋‹ค. ๊ทธ๋ฆผ 2๋Š” ๊ตญ๋‚ด ๊ณ ์†๋„๋กœ CCTV ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์˜ˆ์‹œ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค[21].

๊ทธ๋ฆผ 2. ๊ตญ๋‚ด ๊ณ ์†๋„๋กœ CCTV ๋ฐ์ดํ„ฐ ์„ธํŠธ ์˜ˆ์‹œ

Fig. 2. Example of Domestic Highway CCTV Dataset

../../Resources/kiee/KIEE.2025.74.12.2287/fig2.png

3.1.2 ๋ฐ์ดํ„ฐ ์„ธํŠธ ์ „์ฒ˜๋ฆฌ

์ˆ˜์ง‘ํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ๋ถ€ํ„ฐ ์ž˜๋ชป๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์„ ๋ณ„ํ•˜๊ณ , ํ•™์Šต์— ๋ฐฉํ•ด ์š”์†Œ๋กœ ์ž‘์šฉํ•˜๋Š” ๋ฐ์ดํ„ฐ๋“ค์— ๋Œ€ํ•ด์„œ ์„ ๋ณ„ํ•˜์—ฌ ์ •ํ™•ํ•œ ๋ชจ๋ธ ํ•™์Šต์ด ์ˆ˜ํ–‰๋˜๋„๋ก ์ „์ฒ˜๋ฆฌ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ์ˆ˜ํ–‰ํ•œ ์ „์ฒ˜๋ฆฌ ์ž‘์—…์€ <ํ‘œ 1>๊ณผ ๊ฐ™๋‹ค.

ํ‘œ 1. ์ „์ฒ˜๋ฆฌ ์ž‘์—… ๋ชฉ๋ก

Table 1. List of Preprocessing Tasks

๊ตฌ๋ถ„ ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ์ˆ˜ํ–‰ ์ž‘์—…
1 ์œ ํšจํ•˜์ง€ ์•Š๋Š” ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค ์ขŒํ‘œ ๊ฐ’์„ ๋ ˆ์ด๋ธ”๋กœ ๊ฐ–๋Š” ๋ฐ์ดํ„ฐ ์„ ๋ณ„
2 ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ฐ„์˜ ํด๋ž˜์Šค ๋ถ„๋ฅ˜์˜ ํ†ตํ•ฉ ๋ฐ ๊ฐ’์˜ ์žฌ์ •์˜๋กœ ์ธํ•œ ๋ผ๋ฒจ๋ง ๋ฐ์ดํ„ฐ ์ผ๊ด„ ์ˆ˜์ •
3 ์˜์ƒ ๋‚ด ๊ฐ์ฒด๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š๋Š” ๋ฐ์ดํ„ฐ ์„ ๋ณ„
4 ๋ถ€์กฑํ•œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ ์•ฝํ•œ ์ฆ๊ฐ•์„ ์ˆ˜ํ–‰
(์•ฝํ•œ ์ฆ๊ฐ• : ๋ฐ๊ธฐ, ๋ช…์•”, ์ฑ„๋„ ๋“ฑ์„ ์กฐ์ ˆ)
5 ๊ฐ์ฒด ๊ฒ€์ถœ ๋ชจ๋ธ์—์„œ ์š”๊ตฌํ•˜๋Š” ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค ์ •๋ณด ํ˜•์‹์œผ๋กœ Labeling ํŒŒ์ผ์˜ ๋‚ด์šฉ์„ ๋ณ€ํ™˜.

๊ตฌ๋ถ„ 1๋ฒˆ, ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ ํ™•๋ณด๋ฅผ ์œ„ํ•ด ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค ์ •๋ณด ์˜ค๋ฅ˜๊ฐ€ ์žˆ๋Š” ์ƒ˜ํ”Œ์„ ์‚ฌ์ „ ์ œ๊ฑฐํ•˜์˜€๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, Labeling ๋ฐ์ดํ„ฐ์˜ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค ์ขŒํ‘œ๊ฐ€ ์‹ค์ œ ๊ฐ์ฒด ์œ„์น˜์™€ ๋ถˆ์ผ์น˜ํ•˜๊ฑฐ๋‚˜ ์œ ํšจ ๋ฒ”์œ„๋ฅผ ๋ฒ—์–ด๋‚˜๋Š” ๊ฒฝ์šฐ ํ•ด๋‹น ์ด๋ฏธ์ง€๋Š” ํ•™์Šต ๋ฐ ํ‰๊ฐ€์—์„œ ์ œ์™ธํ•˜์˜€๋‹ค(๊ทธ๋ฆผ 3 ์ฐธ์กฐ).

๊ทธ๋ฆผ 3. ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค ์ •๋ณด์™€ ์‹ค์ œ ๊ฐ์ฒด์˜ ๋ถˆ์ผ์น˜

Fig. 3. Discrepancy between Bounding Box Information and Actual Objects

../../Resources/kiee/KIEE.2025.74.12.2287/fig3.png

์˜ค๋ฅ˜ ๊ฒ€์ถœ์€ ๋‘ ๋‹จ๊ณ„๋กœ ์ด๋ฃจ์–ด์กŒ๋‹ค. ์ฒซ์งธ, ์‚ฌ์ „ ํ•™์Šต๋œ ๊ฐ์ฒด ๊ฒ€์ถœ ๋ชจ๋ธ์„ ์ด์šฉํ•ด ์˜ˆ์ธก๋œ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค์™€ Labeling ๋ฐ์ดํ„ฐ์˜ ๋ฐ•์Šค ๊ฐ„ IoU(Intersection over Union)๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ์ผ์ฐจ์ ์œผ๋กœ ๋ถ€์ •ํ•ฉ ์ƒ˜ํ”Œ์„ ์„ ๋ณ„ํ•˜์˜€๋‹ค. ๋‘˜์งธ, ์ผ์ฐจ ์„ ๋ณ„๋œ ์ƒ˜ํ”Œ์— ๋Œ€ํ•ด ์œก์•ˆ ๊ฒ€์ˆ˜๋ฅผ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ตœ์ข…์ ์œผ๋กœ ์˜ค๋ฅ˜ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค๋ฅผ ์ œ๊ฑฐํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์ด์ค‘ ๊ฒ€์ฆ ๊ณผ์ •์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์‹ ๋ขฐ๋„๋ฅผ ๋†’์ด๊ณ , ํ•™์Šต ๋ฐ ํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ์˜ ์™œ๊ณก์„ ์ตœ์†Œํ™”ํ•˜์˜€๋‹ค.

๊ตฌ๋ถ„ 2๋ฒˆ, ์‹œ๋‚ด๋„๋กœ ๋ฐ์ดํ„ฐ์™€ ๊ณ ์†๋„๋กœ ๋ฐ์ดํ„ฐ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ๊ฐ์ฒด ์นดํ…Œ๊ณ ๋ฆฌ๋ฅผ ๋‹จ์ผํ•œ ์ฒด๊ณ„๋กœ ํ†ตํ•ฉํ•˜๋Š” ์ž‘์—…์ด๋‹ค. ๋‘ ๋ฐ์ดํ„ฐ ์„ธํŠธ๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ถ„๋ฅ˜ ๊ธฐ์ค€์„ ์ ์šฉํ•˜๊ณ  ์žˆ์œผ๋ฏ€๋กœ, ๋ณ„๋„ ์กฐ์ • ์—†์ด ํ•™์Šต์— ํˆฌ์ž…ํ•  ๊ฒฝ์šฐ ๊ฒฐ๊ณผ์˜ ์ผ๊ด€์„ฑ๊ณผ ์‹ ๋ขฐ์„ฑ์„ ๋ณด์žฅํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ด์— ๊ณตํ†ต์˜ ํด๋ž˜์Šค ์ •์˜(car, bus, truck, bicycle, person)๋กœ ๋ ˆ์ด๋ธ”์„ ๋‹ค์‹œ ๋งคํ•‘ํ•˜์—ฌ ํ•™์Šต ๋ฐ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค.

๊ตฌ๋ถ„ 3๋ฒˆ, ๊ฐ์ฒด๊ฐ€ ์ „ํ˜€ ํฌํ•จ๋˜์ง€ ์•Š์€ ์ด๋ฏธ์ง€ ์ƒ˜ํ”Œ์€ ํ•™์Šต ์‹œ ๋ฉ”๋ชจ๋ฆฌยท์บ์‹œ ํ™œ์šฉ๋งŒ ์ฆ๊ฐ€์‹œํ‚ค๋ฏ€๋กœ ์ œ๊ฑฐํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์‚ฌ์ „ ํ•™์Šต๋œ ๊ฐ์ฒด ๊ฒ€์ถœ ๋ชจ๋ธ์„ ์ด์šฉํ•ด ๋ฌด๊ฒ€์ถœ ์ด๋ฏธ์ง€๋ฅผ 1์ฐจ ์„ ๋ณ„ํ•˜๊ณ , ์ดํ›„ ์œก์•ˆ ๊ฒ€์ˆ˜๋ฅผ ํ†ตํ•ด ์ตœ์ข… ์ œ๊ฑฐํ•˜์˜€๋‹ค(๊ทธ๋ฆผ 4 ์ฐธ์กฐ).

๊ทธ๋ฆผ 4. ์ด๋ฏธ์ง€ ๋‚ด ์•„๋ฌด ๊ฐ์ฒด๋„ ์กด์žฌํ•˜์ง€ ์•Š๋Š” ๋ฐ์ดํ„ฐ

Fig. 4. Data with No Objects in Images

../../Resources/kiee/KIEE.2025.74.12.2287/fig4.png

๊ตฌ๋ถ„ 4๋ฒˆ, ์•ผ๊ฐ„์˜ ๊ฐ•์šฐ ์กฐ๊ฑด์˜ ์‹ค์ œ ๋„๋กœ ์ด๋ฏธ์ง€๊ฐ€ ๋ถ€์กฑํ•˜์—ฌ ํ•™์Šต ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๊ฐ€ ํŽธํ–ฅ๋˜๋Š” ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ์•ฝํ•œ ์ฆ๊ฐ•์„ ์ ์šฉํ•˜์˜€๋‹ค. ๋ณธ ์ฆ๊ฐ•์€ ์‹ค์ œ ๋น„ ์˜ค๋Š” ๊ธฐ์ƒ ์กฐ๊ฑด์˜ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ ์Šคํƒ€์ผ์ด ๋ณ€์ด๋˜์ง€ ์•Š๋Š” ์ˆ˜์ค€๊ณผ ๊ฐ์ฒด ์˜ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค ์ขŒํ‘œ๊ฐ€ ๋ณ€ํ•˜์ง€ ์•Š๋Š” ์ˆ˜์ค€์—์„œ ๋ฐ๊ธฐ, ๋ช…์•”, ์ฑ„๋„, ์„ ๋ช…๋„ ๋“ฑ์„ ์กฐ์ ˆํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ˆ˜ํ–‰๋˜๋ฉฐ, CNN ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ด ํ”ฝ์…€ ๊ฐ’ ๋ถ„ํฌ์— ๊ณผ๋„ํ•˜๊ฒŒ ์˜์กดํ•˜์ง€ ์•Š๊ณ , ๋ณด๋‹ค ์ผ๋ฐ˜ํ™”๋œ ํŠน์ง•์„ ํ•™์Šตํ•˜์—ฌ ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค(๊ทธ๋ฆผ 5 ์ฐธ์กฐ).

๊ทธ๋ฆผ 5. ์•ฝํ•œ ์ฆ๊ฐ•์„ ์ ์šฉํ•œ ์ด๋ฏธ์ง€

Fig. 5. Image with Weak Augmentation Applied

../../Resources/kiee/KIEE.2025.74.12.2287/fig5.png

๊ตฌ๋ถ„ 5๋ฒˆ, ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ณ„๋กœ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค ํ‘œ๊ธฐ ๋ฐฉ์‹์ด ์ƒ์ดํ•˜๋ฏ€๋กœ, YOLO v9 ๋ชจ๋ธ์˜ ์ž…๋ ฅ ํ˜•์‹์— ๋งž์ถ”๊ธฐ ์œ„ํ•ด ์ „์ฒ˜๋ฆฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. YOLO v9๋Š” ํด๋ž˜์Šค ID, ๊ฐ์ฒด ์ค‘์‹ฌ์˜ xยทy ์ขŒํ‘œ, ๊ฐ์ฒด์˜ ๋„ˆ๋น„ ๋ฐ ๋†’์ด๋ฅผ ์ˆœ์„œ๋Œ€๋กœ ์š”๊ตฌํ•˜๋ฉฐ, ํด๋ž˜์Šค ID๋ฅผ ์ œ์™ธํ•œ ๋ชจ๋“  ๊ฐ’์€ 0๊ณผ 1 ์‚ฌ์ด๋กœ ์ •๊ทœํ™”๋œ ๊ฐ’์„ ์‚ฌ์šฉํ•ด์•ผ ํ•œ๋‹ค. ์ด์— ๊ฐ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์›๋ณธ ์ขŒํ‘œ๋ฅผ ๋ชจ๋ธ ์š”๊ตฌ ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ , ์ขŒํ‘ฏ๊ฐ’์ด [0,1] ๋ฒ”์œ„์— ๋“ค์–ด๊ฐ€๋„๋ก ์ •๊ทœํ™”ํ•˜์˜€๋‹ค.

3.1.3 ์ตœ์ข… ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๋ถ„ํฌ

์ „์ฒ˜๋ฆฌ ํ›„ ๊ตญ๋‚ด ์‹œ๋‚ด๋„๋กœ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” <ํ‘œ 2>์™€ ๊ฐ™์ด ์ด 113,487์žฅ์˜ ์œ ํšจ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ด ์ค‘ ์ฃผ๊ฐ„ ์ด๋ฏธ์ง€๊ฐ€ ๋‹ค์ˆ˜๋ฅผ ์ฐจ์ง€ํ•˜๊ณ , ์•ผ๊ฐ„ ์ด๋ฏธ์ง€๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ์ ์œผ๋ฉฐ, ๋ง‘์€ ๋‚  ๋ฐ์ดํ„ฐ์˜ ๋น„์œจ์ด ๊ธฐ์ƒ(๋น„ยท๋ˆˆยท์•ˆ๊ฐœ) ๋ฐ์ดํ„ฐ๋ณด๋‹ค ํ˜„์ €ํžˆ ๋†’๋‹ค. ๋˜ํ•œ ์ „์ฒ˜๋ฆฌ ํ›„ ๊ตญ๋‚ด ๊ณ ์†๋„๋กœ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” <ํ‘œ 3>๊ณผ ๊ฐ™์ด ์ด 262,635์žฅ์˜ ์œ ํšจ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์‹œ๋‚ด๋„๋กœ ๋ฐ์ดํ„ฐ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ฃผ๊ฐ„ ์ด๋ฏธ์ง€ ๋น„์œจ์ด ๋†’๊ณ  ์•ผ๊ฐ„ ์ด๋ฏธ์ง€๋Š” ๋ถ€์กฑํ•˜๋ฉฐ, ํŠนํžˆ ์•ผ๊ฐ„ ๊ฐ•์šฐ(Rainy) ์ด๋ฏธ์ง€๋Š” ์ „ํ˜€ ํฌํ•จ๋˜์–ด ์žˆ์ง€ ์•Š๋‹ค. ์ด์™€ ๊ฐ™์€ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ตญ๋‚ด ์‹œ๋‚ด๋„๋กœ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์ฃผ ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•˜๋˜ ๋ถ€์กฑํ•œ ์•ผ๊ฐ„ ๋ฐ ์•…์ฒœํ›„ ์ด๋ฏธ์ง€๋ฅผ ๊ตญ๋‚ด ๊ณ ์†๋„๋กœ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ ๋ณด์ถฉํ•˜๋Š” ํ˜ผํ•ฉ ๊ตฌ์„ฑ ๋ฐฉ์•ˆ์„ ์ฑ„ํƒํ•œ๋‹ค. ํ›ˆ๋ จ ๋ฐ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋Š” ๋‘ ์„ธํŠธ๋ฅผ ๋™์ผ ๋น„์œจ๋กœ ํ˜ผํ•ฉํ•˜์—ฌ ํŽธํ–ฅ์„ ์ตœ์†Œํ™”ํ•˜๋ฉฐ, ์•ผ๊ฐ„ ์šฐ์ฒœ ๋ฐ์ดํ„ฐ๋Š” ์•ฝํ•œ ์ฆ๊ฐ•์„ ํ†ตํ•ด ์ถ”๊ฐ€ ๋ณด์™„ํ•œ๋‹ค.

ํ‘œ 2. ์ „์ฒ˜๋ฆฌ ํ›„ ๊ตญ๋‚ด ์‹œ๋‚ด๋„๋กœ ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์„ฑ

Table 2. Composition of Domestic Urban Road Dataset after Preprocessing

๋‚ ์”จ ๊ตฌ๋ถ„ ์ฃผ๊ฐ„ ์•ผ๊ฐ„
Training Sunny 57,556์žฅ 33,789์žฅ
Rainy 4,533์žฅ 3,765์žฅ
Cloudy 2,255์žฅ 399์žฅ
Foggy 580์žฅ 0์žฅ
Snow 1,118์žฅ 325์žฅ
Validation Sunny 4,620์žฅ 2,658์žฅ
Rainy 803์žฅ 606์žฅ
Cloudy 315์žฅ 88์žฅ
Foggy 77์žฅ 0์žฅ
Snow 0์žฅ 0์žฅ
Test 100์žฅ

ํ‘œ 3. ์ „์ฒ˜๋ฆฌ ํ›„ ๊ตญ๋‚ด ๊ณ ์†๋„๋กœ ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์„ฑ

Table 3. Composition of Domestic Highway Dataset after Preprocessing

๋‚ ์”จ ๊ตฌ๋ถ„ ์ฃผ๊ฐ„ ์•ผ๊ฐ„
Training Sunny 158,493์žฅ 25,319์žฅ
Rainy 32,397์žฅ 0์žฅ
Cloudy 0์žฅ 0์žฅ
Foggy 10,800์žฅ 0์žฅ
Snow 5,516์žฅ 1,559์žฅ
Validation Sunny 19,905์žฅ 3,739์žฅ
Rainy 3,480์žฅ 0์žฅ
Cloudy 0์žฅ 0์žฅ
Foggy 743์žฅ 0์žฅ
Snow 684์žฅ 0์žฅ
Test 0์žฅ

3.2 ๊ฐ•์šฐ ์Šคํƒ€์ผ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ๋ชจ๋ธ

๋ณธ ์—ฐ๊ตฌ์—์„œ ์Šคํƒ€์ผ ์ „์ด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ์ฆ๊ฐ• ๋ชจ๋ธ๋กœ ์‚ฌ์šฉ๋œ CycleGAN Turbo๋Š” ์ง์ง€์–ด์ง„ ํ•™์Šต ๋ฐ์ดํ„ฐ๊ฐ€ ์—†๋Š” ๋น„์ •ํ•ฉ(Unpaired) ์ด๋ฏธ์ง€ ๊ฐ„์˜ ๋ณ€ํ™˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ ๋น„์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ์ด๋ฏธ์ง€-์ด๋ฏธ์ง€ ๋ณ€ํ™˜ ํ”„๋ ˆ์ž„์›Œํฌ์ด๋‹ค[22]. ๋„๋ฉ”์ธ ๊ฐ„์˜ ๋ช…์‹œ์  ๋งค์นญ ์ •๋ณด ์—†์ด๋„ ์Šคํƒ€์ผ์„ ๋ณ€ํ™˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ํ•ต์‹ฌ์€ Cycle Consistency(์‚ฌ์ดํด ์ผ๊ด€์„ฑ) ์ œ์•ฝ์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค. ์ด๋Š” ๋„๋ฉ”์ธ X์˜ ์ด๋ฏธ์ง€๋ฅผ ๋„๋ฉ”์ธ $Y$๋กœ ๋ณ€ํ™˜ํ•œ ๋’ค, ๋‹ค์‹œ ๋„๋ฉ”์ธ X๋กœ ๋ณต์›ํ–ˆ์„ ๋•Œ ์ตœ์ข… ๊ฒฐ๊ณผ๊ฐ€ ์›๋ณธ ์ด๋ฏธ์ง€์™€ ์œ ์‚ฌํ•ด์•ผ ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค.

์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋Š” ๊ทธ๋ฆผ 6๊ณผ ๊ฐ™์ด ๋‘ ๊ฐœ์˜ ์ƒ์„ฑ๊ธฐ ($G$, $F$)์™€ ํŒ๋ณ„๊ธฐ($D_{X}$, $D_{Y}$)๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๊ฐ๊ฐ์˜ ๋ฐฉํ–ฅ์„ฑ์— ๋Œ€ํ•œ ํ•™์Šต์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋˜ํ•œ Stable Diffusion Turbo(SD-Turbo) ๊ตฌ์กฐ๋ฅผ ๋ฐฑ๋ณธ์œผ๋กœ ์ฑ„ํƒํ•˜์—ฌ, ๊ธฐ์กด diffusion ๋ฐฉ์‹์˜ ๋ฐ˜๋ณต์ ์ธ de-noising ๊ณผ์ •์„ ์ œ๊ฑฐํ•˜๊ณ , ๋‹จ์ผ ๋‹จ๊ณ„ ์ถ”๋ก ๋งŒ์œผ๋กœ ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€ ์ƒ์„ฑ์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ์ตœ์ ํ™”๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ทธ๋ฆผ 7๊ณผ ๊ฐ™์ด ํ…์ŠคํŠธ ์กฐ๊ฑด ๊ธฐ๋ฐ˜ ์ œ์–ด๋ฅผ ์œ„ํ•ด CLIP ์ž„๋ฒ ๋”ฉ์„ ํ™œ์šฉํ•˜์—ฌ, ์˜๋ฏธ๋ก ์  ์กฐ๊ฑด์„ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๊ณผ์ •์— ํ†ตํ•ฉํ•œ๋‹ค.

๊ทธ๋ฆผ 6. CycleGAN Turbo์˜ ๋™์ž‘ ๊ตฌ์กฐ

Fig. 6. Operational structure of CycleGAN Turbo

../../Resources/kiee/KIEE.2025.74.12.2287/fig6.png

๊ทธ๋ฆผ 7. CycleGAN Turbo์˜ ๋ชจ๋ธ ๊ตฌ์กฐ

Fig. 7. Model Structure of CycleGAN Turbo

../../Resources/kiee/KIEE.2025.74.12.2287/fig7.png

์ œ์•ˆ๋œ CycleGAN Turbo ๋ชจ๋ธ์„ ํ†ตํ•œ ์ฆ๊ฐ•์€ ์†์‹ค ํ•จ์ˆ˜์˜ ๋‹ค์ค‘ ๊ฒฐํ•ฉ ๊ตฌ์กฐ๋กœ ๊ตฌ์„ฑ๋˜์–ด ๋™์ž‘ํ•œ๋‹ค.

๋จผ์ €, Consistency Loss๋ฅผ ํ†ตํ•ด ๋ณ€ํ™˜๋œ ์ด๋ฏธ์ง€๊ฐ€ ์›๋ณธ ๊ตฌ์กฐ๋ฅผ ์œ ์ง€ํ•˜๋„๋ก ์ œ์•ฝํ•œ๋‹ค. ํ•ด๋‹น Loss๋ฅผ ํ†ตํ•ด ๊ธฐ์ƒ ์กฐ๊ฑด์ด ๋ณ€๊ฒฝ๋˜์–ด๋„ ๋„๋กœยท๊ฑด๋ฌผยท์ฐจ์„  ๋“ฑ์˜ ๊ธฐํ•˜ํ•™์  ๊ตฌ์กฐ๋Š” ์œ ์ง€๋˜๊ณ , ์กฐ๋ช…ยท์ƒ‰์กฐยท๋ช…์•” ๋“ฑ์˜ ๊ธฐ์ƒ ์Šคํƒ€์ผ์€ ๋ณ€ํ™˜๋œ๋‹ค. ๋‹จ์ˆœํžˆ ํ”ฝ์…€์€ ๋ฐ”๊พธ๋Š” ํ•ฉ์„ฑ์ด ์•„๋‹ˆ๋ผ ์›๋ณธ์˜ ๊ณต๊ฐ„์  ๊ตฌ์กฐ๋ฅผ ๋ณด์กดํ•œ ์ฑ„ ์‹œ๊ฐ์  ์†์„ฑ๋งŒ ์กฐ์ •ํ•˜๋Š” ๋ณ€ํ™˜์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ทธ๋ฆฌ๊ณ  Adversarial Loss๋ฅผ ํ†ตํ•ด ์ƒ์„ฑ๊ธฐ(G)๊ฐ€ ๋งŒ๋“  ์ด๋ฏธ์ง€์™€ ์‹ค์ œ ์ด๋ฏธ์ง€๋ฅผ ํŒ๋ณ„๊ธฐ $D_{Y}$๊ฐ€ ๊ตฌ๋ณ„ํ•˜๋„๋ก ํ•™์Šตํ•˜์—ฌ ๋ชฉํ‘œ ๋„๋ฉ”์ธ์˜ ์‹œ๊ฐ์  ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜๊ณ , ๊ธฐ์ƒ ์กฐ๊ฑด ๋ณ€ํ™˜ ์‹œ ์ƒ๊ธฐ๋Š” ์ƒ‰์ƒ ๋ถˆ์—ฐ์†์„ฑ, ๋…ธ์ด์ฆˆ, ์™œ๊ณก์„ ํŒ๋ณ„๊ธฐ์˜ ํ”ผ๋“œ๋ฐฑ์„ ํ†ตํ•ด ์ค„์—ฌ์„œ ์‹œ๊ฐ์ ์œผ๋กœ ์ž์—ฐ์Šค๋Ÿฌ์šด ํ•ฉ์„ฑ ๊ฒฐ๊ณผ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ๋˜ํ•œ CLIP Alignment Loss๋ฅผ ํ†ตํ•ด ๊ธฐ์ƒ ์ƒํƒœ์˜ ์˜๋ฏธ์  ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•จ์œผ๋กœ์จ ๊ธฐ์ƒ ์Šคํƒ€์ผ์˜ ์ ์šฉ๊ณผ ๊ฐ์ฒด์˜ ๊ตฌ์กฐ์  ์ผ๊ด€์„ฑ์„ ๋ณด์กด์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์†์‹ค ํ•จ์ˆ˜์˜ ๋‹ค์ค‘ ๊ฒฐํ•ฉ ๊ตฌ์กฐ๋Š” ์ƒ์„ฑ๊ธฐ์˜ feature embedding ๊ณต๊ฐ„์—์„œ ๋„๋ฉ”์ธ ๊ฐ„ ์‹œ๊ฐ์  ํŠน์ง•(์กฐ๋ช…, ์ฑ„๋„, ๋Œ€๋น„, ์Šคํƒ€์ผ ๋“ฑ)์„ ๋ถ„๋ฆฌํ•˜๊ณ , ๊ฐ์ฒด ๊ฒฝ๊ณ„ ๋ฐ ์œค๊ณฝ์„ ๊ณผ ๊ฐ™์€ ๊ตฌ์กฐ์  ํŠน์ง•์„ ์œ ์ง€ํ•˜๋„๋ก ํ•™์Šต์„ ์œ ๋„ํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์ƒ ์Šคํƒ€์ผ ์ „์ด์— ์ ํ•ฉํ•œ ์ฆ๊ฐ• ๊ธฐ๋ฒ•์ž„์„ ๋ชจ๋ธ ๊ตฌ์กฐ์ ์œผ๋กœ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์˜ ์‹คํ—˜์—์„œ๋Š” ์ด๋Ÿฌํ•œ CycleGAN Turbo ๋ชจ๋ธ์— ์‚ฌ์ „ ํ•™์Šต๋œ ๊ฐ•์šฐ ์Šคํƒ€์ผ ๋ณ€ํ™˜ ๊ฐ€์ค‘์น˜๋ฅผ ๊ทธ๋Œ€๋กœ ํ™œ์šฉํ•˜์—ฌ, ๋ณ„๋„์˜ ๋ฏธ์„ธ ์กฐ์ •(fine-tuning) ๊ณผ์ • ์—†์ด ๋ง‘์€ ๋‚  ๋„๋กœ ์˜์ƒ์„ ๊ฐ•์šฐ ์Šคํƒ€์ผ๋กœ ๋ณ€ํ™˜ํ•˜์˜€๋‹ค. ์›๋ณธ ๋ง‘์€ ๋‚  ์ด๋ฏธ์ง€๋Š” ๋ชจ๋ธ์˜ Source Domain ์ž…๋ ฅ์œผ๋กœ ์ œ๊ณต๋˜๋ฉฐ, ์ถœ๋ ฅ ์ด๋ฏธ์ง€๋Š” ๊ฐ•์šฐ ํ™˜๊ฒฝ์˜ ์‹œ๊ฐ์  ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•œ Target Domain ์ด๋ฏธ์ง€๋กœ ์ƒ์„ฑ๋œ๋‹ค. ์ด๋•Œ ๋ชจ๋ธ์€ ๋ช…์‹œ์  ๋ผ๋ฒจ ๋งค์นญ์ด ์—†๋Š” ๋น„์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜ ๊ตฌ์กฐ๋กœ ์ž‘๋™ํ•˜๋ฏ€๋กœ, ์‹ค์ œ ๊ฐ•์šฐ ์˜์ƒ์ด ๋ถ€์กฑํ•œ ์ƒํ™ฉ์—์„œ๋„ ํšจ๊ณผ์ ์ธ ์Šคํƒ€์ผ ์ „์ด๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค. ์ƒ์„ฑ๋œ ์ฆ๊ฐ• ์ด๋ฏธ์ง€๋Š” ์‹ค์ œ ๋„๋กœ ์˜์ƒ๊ณผ ๋™์ผํ•œ ํ•ด์ƒ๋„ ๋ฐ ์‹œ์  ์ •๋ณด๋ฅผ ์œ ์ง€ํ•˜๋ฉฐ, ์ฐจ๋Ÿ‰ ํ‘œ๋ฉด ๋ฐ˜์‚ฌ๊ด‘, ๋„๋กœ ์ˆ˜๋ง‰, ์‹œ์•ผ ํ๋ฆผ ๋“ฑ ๊ฐ•์šฐ ํ™˜๊ฒฝ ํŠน์œ ์˜ ์‹œ๊ฐ์  ํŠน์ง•์„ ํฌํ•จํ•œ๋‹ค. ๊ทธ๋ฆผ 8์€ CycleGAN Turbo๋กœ ์ƒ์„ฑ๋œ ์ฆ๊ฐ• ์ด๋ฏธ์ง€๊ฐ€ ์‹ค์ œ ๊ฐ•์šฐ ํšจ๊ณผ๋ฅผ ์‹ค์งˆ์ ์œผ๋กœ ๋ชจ์‚ฌํ•จ์„ ์‹œ๊ฐ์ ์œผ๋กœ ๋ณด์—ฌ์ค€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋ ‡๊ฒŒ ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ๋ฅผ โ€˜๊ฐ•์šฐ ์Šคํƒ€์ผ ์ฆ๊ฐ• ์„ธํŠธโ€™๋กœ ์ •์˜ํ•˜๊ณ , ์ดํ›„ ๊ฐ์ฒด ๊ฒ€์ถœ ๋ชจ๋ธ์˜ ํ•™์Šต ๋ฐ ํ‰๊ฐ€์— ํˆฌ์ž…ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ธฐ์ƒ ์กฐ๊ฑด ๋ณ€ํ™”์— ๋Œ€ํ•œ ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 8. CycleGAN Turbo ๋ชจ๋ธ์„ ์ด์šฉํ•œ ์ฆ๊ฐ• ์˜ˆ์‹œ

Fig. 8. Augmentation Example Using CycleGAN Turbo Model

../../Resources/kiee/KIEE.2025.74.12.2287/fig8.png

3.3 ๋„๋กœ ๊ตํ†ต ๊ฐ์ฒด ํƒ์ง€ ๋ชจ๋ธ

์ตœ๊ทผ ๊ฐ์ฒด ๊ฒ€์ถœ ๋ถ„์•ผ์—์„œ YOLO ์‹œ๋ฆฌ์ฆˆ๋Š” ๊ฒฝ๋Ÿ‰์„ฑ๊ณผ ์ •ํ™•๋„ ๋ฉด์—์„œ ์ง€์†์ ์ธ ๋ฐœ์ „์„ ์ด๋ค„์™”๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฐ์ฒด ํƒ์ง€ ๋ชจ๋ธ๋กœ ์‚ฌ์šฉ๋œ YOLO v9์€ ๋‹จ์ผ ๋‹จ๊ณ„(Single-Stage) ๊ฐ์ฒด ๊ฒ€์ถœ ๋ชจ๋ธ์ด๋ฉฐ, ๊ทธ๋ฆผ 9์—์„œ ๋‚˜ํƒ€๋‚ธ ๋ฐ”์™€ ๊ฐ™์ด ์†์‹ค ํ•จ์ˆ˜๋ณ„๋กœ ๊ฒฝ์‚ฌ ์ •๋ณด๋ฅผ ๊ฐœ๋ณ„์ ์œผ๋กœ ์กฐ์ •ํ•˜๋Š” Programmable Gradient Information(PGI) ๊ธฐ๋ฒ•๊ณผ Task-Aligned Assigner๋ฅผ ๊ฒฐํ•ฉํ•จ์œผ๋กœ์จ ํ•™์Šต ์•ˆ์ •์„ฑ๊ณผ ์ •ํ•ฉ์„ฑ์„ ํ–ฅ์ƒ์‹œ์ผฐ์œผ๋ฉฐ, ๊ทธ๋ฆผ 10๊ณผ ๊ฐ™์ด ๊ธฐ์กด ELAN ๊ตฌ์กฐ๋ฅผ ์ผ๋ฐ˜ํ™”ํ•œ GELAN ๋„คํฌ์›Œํฌ๋ฅผ ๋„์ž…ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์Šค์ผ€์ผ์˜ ํŠน์ง• ์ •๋ณด๋ฅผ ๋”์šฑ ํšจ๊ณผ์ ์œผ๋กœ ํ†ตํ•ฉํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋™์ผ ํ•ด์ƒ๋„ ์กฐ๊ฑด์—์„œ mAP@0.50 57.7%, 210 FPS์˜ ์„ฑ๋Šฅ์„ ๊ธฐ๋กํ•˜๋ฉฐ, ์ •ํ™•๋„์™€ ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ ์„ฑ๋Šฅ ๋ชจ๋‘์—์„œ ํ–ฅ์ƒ๋œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค[23].

๊ทธ๋ฆผ 9. YOLO v9 PGI ํ•ต์‹ฌ ๊ธฐ๋Šฅ

Fig. 9. Core functionalities of YOLO v9 PGI

../../Resources/kiee/KIEE.2025.74.12.2287/fig9.png

๊ทธ๋ฆผ 10. YOLO v9 GELAN ํ•ต์‹ฌ ๊ธฐ๋Šฅ

Fig. 10. Core functionalities of YOLO v9 GELAN

../../Resources/kiee/KIEE.2025.74.12.2287/fig10.png

๋ณธ ์—ฐ๊ตฌ์˜ ์‹คํ—˜์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํŠน์ง•์„ ๊ฐ–๋Š” YOLO v9์˜ ์„ธ๋ถ€ ๋ฒ„์ „ ์ค‘ YOLO v9-e ๊ธฐ๋ฐ˜ ๊ฐ์ฒด ๊ฒ€์ถœ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ๋ง‘์€ ๋‚ ยท๋น„ ์˜ค๋Š” ๋‚ , ์ฃผ๊ฐ„ยท์•ผ๊ฐ„ ๋“ฑ ๋‹ค์–‘ํ•œ ๊ธฐ์ƒ ๋ฐ ์‹œ๊ฐ„๋Œ€ ์กฐ๊ฑด์—์„œ์˜ ํƒ์ง€ ์„ฑ๋Šฅ์„ ๋น„๊ตยท๋ถ„์„ํ•˜์˜€๋‹ค. ํ•™์Šต์—์„œ๋Š” ์•ž์„œ ์ƒ์„ฑํ•œ ๊ฐ•์šฐ ์Šคํƒ€์ผ ์ฆ๊ฐ• ๋ฐ์ดํ„ฐ๋ฅผ ์‹ค์ œ ๋ฐ์ดํ„ฐ์™€ ํ†ตํ•ฉํ•˜์—ฌ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ฆ๊ฐ• ๋ฐ์ดํ„ฐ ๋„์ž…์ด ๊ฒ€์ถœ ์ •ํ™•๋„(mAP)์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ๊ณผ, ๊ธฐ์ƒ ๋ณ€ํ™”์— ๋Œ€ํ•œ ๋„๋ฉ”์ธ ์ผ๋ฐ˜ํ™” ํšจ๊ณผ๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ฃผยท์•ผ๊ฐ„ ๊ฐ„ ๊ต์ฐจ ์ถ”๋ก ์„ ์ˆ˜ํ–‰ํ•˜์—ฌ, ์•ผ๊ฐ„ ํ•™์Šต ๋ชจ๋ธ์˜ ์ฃผ๊ฐ„ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ์ ๊ฒ€ํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 11์€ ์ฃผ๊ฐ„ ๋ฐ ์•ผ๊ฐ„์˜ ๊ฐ•์šฐ ํ™˜๊ฒฝ์—์„œ YOLO v9-e์˜ ํƒ์ง€ ๊ฒฐ๊ณผ ์˜ˆ์‹œ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค.

๊ทธ๋ฆผ 11. YOLO v9์„ ํ™œ์šฉํ•˜์—ฌ ๊ฐ์ฒด๋ฅผ ์ถ”์ถœํ•˜๋Š” ์˜ˆ์‹œ

Fig. 11. Example of Object Extraction Using YOLO v9

../../Resources/kiee/KIEE.2025.74.12.2287/fig11.png

3.4 4-way ํ•™์Šต ์‹œ๋‚˜๋ฆฌ์˜ค ์ •์˜

๋„๋กœ ๊ตํ†ต ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด์„œ ๊ธฐ์ƒ ์Šคํƒ€์ผ ์ฆ๊ฐ•์— ๋Œ€ํ•œ ํšจ๊ณผ ๊ฒ€์ฆ๊ณผ ๋„๋กœ ๊ตํ†ต ์ด๋ฏธ์ง€ ๋‚ด ์ฐจ๋Ÿ‰ ๊ฐ์ฒด ๊ฒ€์ถœ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ํ™•์ธ์„ ์œ„ํ•ด <ํ‘œ 4>์™€ ๊ฐ™์€ 4๊ฐœ์˜ ์‹คํ—˜ ์œ ํ˜•์„ ์ˆ˜ํ–‰ํ•˜๋Š” ํ”„๋กœ์„ธ์Šค๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋„ค ๊ฐ€์ง€ ์‹คํ—˜ ์œ ํ˜•์€ ์ฃผ๊ฐ„ ๋ฐ ์•ผ๊ฐ„ ๋ฐ์ดํ„ฐ ๋ชจ๋‘์— ๋Œ€ํ•ด ๋™์ผํ•˜๊ฒŒ ์ˆ˜ํ–‰๋œ๋‹ค. ์œ ํ˜• 1์€ YOLO v9-e์˜ ๊ธฐ๋ณธ ์„ฑ๋Šฅ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ์ค€ ์‹คํ—˜์ด๋ฉฐ, ์œ ํ˜• 2์™€ 3์€ ์‹ค์ œ ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ์™€ ์ฆ๊ฐ• ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ ์œ ํ˜•๋ณ„ ๋ชจ๋ธ์˜ ํ•™์Šต์— ํ™œ์šฉํ•˜์—ฌ ๋‘ ๋ชจ๋ธ ๊ฐ„ ์„ฑ๋Šฅ์ด ์œ ์‚ฌํ•จ์„ ๊ฒ€์ฆํ•จ์œผ๋กœ์จ ์ฆ๊ฐ• ๊ธฐ๋ฒ•์˜ ํšจ๊ณผ๋ฅผ ์ž…์ฆํ•œ๋‹ค. ์œ ํ˜• 4์—์„œ๋Š” ์ฆ๊ฐ• ๋ฐ์ดํ„ฐ๋ฅผ ํ˜ผํ•ฉ ํ•™์Šตํ•œ ๋ชจ๋ธ์ด ๋” ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ํ†ตํ•ด ์ฆ๊ฐ•์˜ ํšจ์šฉ์„ ์ถ”๊ฐ€๋กœ ํ™•์ธํ•œ๋‹ค.

ํ‘œ 4. ์ฆ๊ฐ• ๊ฒ€์ฆ ๋ฐ ๊ฐ์ฒด ๊ฒ€์ถœ ํ”„๋กœ์„ธ์Šค

Table 4. Augmentation Validation and Object Detection Process

๊ตฌ๋ถ„ ์œ ํ˜• ์„ค๋ช…
์œ ํ˜•1 ๋ฒ”์šฉ์ ์ธ ๊ฐ์ฒด ์ธ์‹ ๋ชจ๋ธ์˜ ์ •ํ™•๋„ ์ธก์ •
์œ ํ˜•2 ์‹ค์ œ ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ์˜ ํ•™์Šต ๋ฐ ์ •ํ™•๋„ ์ธก์ •
์œ ํ˜•3 ์ฆ๊ฐ• ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ์˜ ํ•™์Šต ๋ฐ ์ •ํ™•๋„ ์ธก์ •
์œ ํ˜•4 ์‹ค์ œ ๋ฐ ์ฆ๊ฐ• ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ์˜ ํ•™์Šต ๋ฐ ์ •ํ™•๋„ ์ธก์ •

3.5 ์‹คํ—˜ ์œ ํ˜•๋ณ„ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ตฌ์„ฑ

<ํ‘œ 5>์™€ <ํ‘œ 6>์€ ๊ฐ๊ฐ 3.4์ ˆ์—์„œ ์–ธ๊ธ‰ํ•œ 4 way ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋”ฐ๋ฅธ ์‹คํ—˜ ์œ ํ˜•๋ณ„ ์ฃผ๊ฐ„ ๋ฐ ์•ผ๊ฐ„ ์‹คํ—˜ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ตฌ์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” ํ‘œ์ด๋‹ค. D1 ๋ฐ N1์€ ๋ง‘์€ ์ฃผ๊ฐ„ ๋ฐ ์•ผ๊ฐ„์˜ ์ด๋ฏธ์ง€ ์†Œ๋Ÿ‰๊ณผ ์ ์€ ํ•™์Šต ๋ฐ˜๋ณต ํšŸ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ YOLO v9-e ์‚ฌ์ „ ํ•™์Šต ๋ชจ๋ธ์˜ ๊ธฐ๋ณธ ์„ฑ๋Šฅ์„ ํ™•์ธํ•˜๋Š” ๊ธฐ์ค€ ์‹คํ—˜์ด๋‹ค. D2 ๋ฐ N2๋Š” ์ฃผ๊ฐ„ ๋ฐ ์•ผ๊ฐ„ ์‹ค์ œ ๊ฐ•์šฐ ์ด๋ฏธ์ง€ 15,000์žฅ๊ณผ ๋ง‘์€ ์ฃผ๊ฐ„ ๋ฐ ์•ผ๊ฐ„ ์ด๋ฏธ์ง€ 20,000์žฅ์„ ํ˜ผํ•ฉํ•˜์—ฌ ํ•™์Šตํ•จ์œผ๋กœ์จ, ์‹ค์ œ ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ๊ฐ€ ๊ฐ์ฒด ํƒ์ง€ ๋ฐ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ‰๊ฐ€ํ•œ๋‹ค. D3 ๋ฐ N3๋Š” ์ฃผ๊ฐ„ ๋ฐ ์•ผ๊ฐ„ ์ฆ๊ฐ• ๊ฐ•์šฐ ์ด๋ฏธ์ง€ 15,000์žฅ๊ณผ ๋ง‘์€ ์ฃผ๊ฐ„ ๋ฐ ์•ผ๊ฐ„ ์ด๋ฏธ์ง€ 20,000์žฅ์„ ํ•จ๊ป˜ ํ•™์Šตํ•˜์—ฌ, ์ฆ๊ฐ• ๊ธฐ๋ฒ•์ด ๋ชจ๋ธ ์„ฑ๋Šฅ์— ๊ธฐ์—ฌํ•˜๋Š” ์ •๋„๋ฅผ ๊ฒ€์ฆํ•œ๋‹ค. D4 ๋ฐ N4๋Š” ๋ชจ๋“  ์‹ค์ œ ๋ฐ ์ฆ๊ฐ• ๊ฐ•์šฐ ์ด๋ฏธ์ง€๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ํ•™์Šตํ•จ์œผ๋กœ์จ, ๋‘ ๋ฐ์ดํ„ฐ ์†Œ์Šค๋ฅผ ๊ฒฐํ•ฉํ–ˆ์„ ๋•Œ ์ตœ๋Œ€ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ํ™•์ธํ•˜๋Š” ์‹คํ—˜์ด๋‹ค.

๊ฒ€์ฆ(Validation) ๋ฐ ํ…Œ์ŠคํŠธ(Test) ์„ธํŠธ๋Š” ๋ชจ๋“  ์œ ํ˜•์—์„œ ๋™์ผํ•˜๊ฒŒ ์œ ์ง€๋œ๋‹ค. ๊ฒ€์ฆ ์„ธํŠธ๋Š” ์ฃผ๊ฐ„ ๋ฐ ์•ผ๊ฐ„ ๋ณ„๋กœ ๋ง‘์€ ์ด๋ฏธ์ง€ 6,000์žฅ๊ณผ ์‹ค์ œ ๊ฐ•์šฐ ์ด๋ฏธ์ง€ 3,000์žฅ์„ ํ˜ผํ•ฉํ•˜์—ฌ ๊ตฌ์„ฑํ•˜๋ฉฐ, ํ…Œ์ŠคํŠธ ์„ธํŠธ์˜ ๊ฒฝ์šฐ์—๋Š” ์ฃผ๊ฐ„ ๋ฐ ์•ผ๊ฐ„ ๋ณ„๋กœ ์‹ค์ œ ๊ฐ•์šฐ ์ด๋ฏธ์ง€ 800์žฅ์œผ๋กœ ์ด๋ฃจ์–ด์ง„๋‹ค.

ํ•™์Šต๊ณผ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์˜ ๋น„์œจ์€ D2 ยท D3 (N2 ยท N3)์—์„œ 35,000 : 9,000(์•ฝ 4 : 1)์œผ๋กœ ์ด์ƒ์ ์ธ ๋น„์œจ์„ ์ ์šฉํ•˜์˜€๋‹ค. D1 ยท N1, D4 ยท N4๋Š” ์‹คํ—˜ ๋ชฉ์  ๋ฐ ๋งฅ๋ฝ์— ๋”ฐ๋ผ ๋น„์œจ์„ ์ผ๋ถ€ ์กฐ์ •ํ•˜์—ฌ ๋ถ€๊ฐ€ ์‹คํ—˜ ํ˜•ํƒœ๋กœ ์ง„ํ–‰๋˜์—ˆ๋‹ค.

ํ‘œ 5. ์ฃผ๊ฐ„ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•œ ์‹คํ—˜ ๋ณ„ ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ

Table 5. Experimental Data Composition for Daytime Dataset

์œ ํ˜• Training Validation Test
D1 5,000 9,000
(6,000+3,000)
800
D2 35,000
(20,000+15,000)
9,000
(6,000+3,000)
800
D3 35,000
(20,000+15,000)
9,000
(6,000+3,000)
800
D4 50,000
(20,000+15,000
+15,000)
9,000
(6,000+3,000)
800

ํ‘œ 6. ์•ผ๊ฐ„ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•œ ์‹คํ—˜ ๋ณ„ ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ

Table 6. Experimental Data Composition for Nighttime Dataset

์œ ํ˜• Training Validation Test
N1 5,000 9,000
(6,000+3,000)
800
N2 35,000
(20,000+15,000)
9,000
(6,000+3,000)
800
N3 35,000
(20,000+15,000)
9,000
(6,000+3,000)
800
N4 50,000
(20,000+15,000
+15,000)
9,000
(6,000+3,000)
800

3.6 ์ฃผ๊ฐ„ ๋ฐ์ดํ„ฐ ์„ธํŠธ์™€ ์•ผ๊ฐ„ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๋Œ€์กฐ

๊ทธ๋ฆผ 12๋Š” ์•ผ๊ฐ„๊ณผ ์ฃผ๊ฐ„์˜ ๋ง‘์€ ๊ธฐ์ƒ๊ณผ ๊ฐ•์šฐ ๊ธฐ์ƒ์˜ ์ฐจ์ด๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ฃผ๊ฐ„ ๋ง‘์€ ๊ธฐ์ƒ ๋ฐ ๊ฐ•์šฐ ํ™˜๊ฒฝ์—์„œ๋Š” ๋ฌผ๋ฐฉ์šธ์ด ์นด๋ฉ”๋ผ ๋ Œ์ฆˆ์— ๋งบํžˆ๊ฑฐ๋‚˜ ํญ์šฐ๊ฐ€ ์•„๋‹Œ ์ด์ƒ ์ฐจ๋Ÿ‰ ๊ฐ์ฒด๋ฅผ ์œก์•ˆ์œผ๋กœ ์‰ฝ๊ฒŒ ์‹๋ณ„ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋…ธ์ด์ฆˆ ์ˆ˜์ค€์ด ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ๋‹ค. ๋ฐ˜๋ฉด ์•ผ๊ฐ„ ๋ฐ์ดํ„ฐ๋Š” ์ฐจ๋Ÿ‰ ์ „์กฐ๋“ฑยทํ›„๋ฏธ๋“ฑ์˜ ๋น› ๋ฒˆ์ง๊ณผ ๋…ธ๋ฉด ๋ฐ˜์‚ฌ๋กœ ์ธํ•ด ๊ฐ์ฒด ๊ฒฝ๊ณ„๊ฐ€ ๋ถˆ๋ถ„๋ช…ํ•ด์ง€๊ณ , ํŠนํžˆ ๊ฐ•์šฐ๊ฐ€ ๊ฒน์น  ๊ฒฝ์šฐ ๋…ธ์ด์ฆˆ๊ฐ€ ๋”์šฑ ์‹ฌํ™”๋œ๋‹ค. ์ด์™€ ๊ฐ™์€ ๋„๋ฉ”์ธ ์ฐจ์ด๋ฅผ ๊ณ ๋ คํ•˜์—ฌ, 3.5์ ˆ๊ณผ ๊ฐ™์ด ์ฃผ๊ฐ„๊ณผ ์•ผ๊ฐ„์„ ๋ณ„๋„์˜ ๋„๋ฉ”์ธ์œผ๋กœ ๊ฐ„์ฃผํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์„ธํŠธ์™€ ํ•™์Šต ๋ชจ๋ธ์„ ๋”ฐ๋กœ ํ•™์Šตํ•˜๊ณ , ๊ฐ๊ฐ์˜ ์ตœ์ ํ™”๋œ ํ•™์Šต ๋ชจ๋ธ์„ ์„ ํƒํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜๋Š” ์ฃผยท์•ผ๊ฐ„ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ๋Œ€๊ทœ๋ชจ ํ˜ผํ•ฉ ํ•™์Šต ์„ธํŠธ๋ฅผ ๊ตฌ์„ฑํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ์‹œ๊ฐ„๋Œ€๋ณ„ ์กฐ๋ช… ๋ฐ ๊ธฐ์ƒ ๋ณ€ํ™”์— ๋ณด๋‹ค ๊ฐ•์ธํ•˜๊ฒŒ ๋Œ€์‘ํ•˜๋„๋ก ํ•  ์ˆ˜๋„ ์žˆ๋‹ค.

๊ทธ๋ฆผ 12. ์ฃผ๊ฐ„ ๋„๋กœ ๋ฐ ์•ผ๊ฐ„ ๋„๋กœ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์˜ ๊ธฐ์ƒ๋ณ„ ๋น„๊ต

Fig. 12. Weather-wise Comparison of Daytime and Nighttime Road Image Data

../../Resources/kiee/KIEE.2025.74.12.2287/fig12.png

3.7 ์‹คํ—˜ ์œ ํ˜•๋ณ„ ํ•™์Šต ํšŸ์ˆ˜

๊ฐ์ฒด ๊ฒ€์ถœ ๋ชจ๋ธ ํ•™์Šต ์‹œ ๋ฐฐ์น˜ ํฌ๊ธฐ(batch size)์™€ ์—ํญ(epoch) ์ˆ˜๋Š” ํ•™์Šต ์•ˆ์ •์„ฑ๊ณผ ์„ฑ๋Šฅ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฏ€๋กœ, ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ํฌ๊ธฐ ๋ฐ ๋ถ„ํฌ์— ๋งž์ถ”์–ด ์ ์ ˆํžˆ ์„ค์ •ํ•ด์•ผ ํ•œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ๋ฐฐ์น˜ ํฌ๊ธฐ 8โ€“32๋Š” ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์ด ์ ๊ณ  ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™”์— ์œ ๋ฆฌํ•˜์ง€๋งŒ, ํ•™์Šต ์†๋„๊ฐ€ ๋А๋ฆฌ๊ณ  ์—…๋ฐ์ดํŠธ๋งˆ๋‹ค ๋…ธ์ด์ฆˆ๊ฐ€ ๋งŽ์•„์ง„๋‹ค. ๋ฐ˜๋ฉด ๋ฐฐ์น˜ ํฌ๊ธฐ 128โ€“1024๋Š” ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ ํšจ์œจ์ด ๋†’๊ณ  ํ•™์Šต ์†๋„๊ฐ€ ๋น ๋ฅด๋‚˜, ๊ณผ์ ํ•ฉ ์œ„ํ—˜์ด ํฌ๊ณ  ๋” ๋งŽ์€ GPU ์ž์›์ด ํ•„์š”ํ•˜๋‹ค.

์—ํญ์€ ์ „์ฒด ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐฐ์น˜๋กœ ๋‚˜๋ˆˆ ํ›„ ๋ชจ๋“  ๋ฐฐ์น˜์— ๋Œ€ํ•ด์„œ 1ํšŒ ํ•™์Šต์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋‹จ์œ„๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ์ฆ‰, ์ „์ฒด ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ํ•œ ๋ฒˆ ๋ชจ๋‘ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์ด ํ•™์Šต์„ ์™„๋ฃŒํ•˜๋Š” ๋‹จ์œ„์ด๋‹ค. ์—ํญ ์ˆ˜๊ฐ€ ๋„ˆ๋ฌด ์ ์œผ๋ฉด ๋ชจ๋ธ์ด ์ถฉ๋ถ„ํžˆ ํ•™์Šต๋˜์ง€ ๋ชปํ•˜๊ณ , ๊ณผ๋„ํ•˜๋ฉด ๊ณผ์ ํ•ฉ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” <ํ‘œ 7>๊ณผ ๊ฐ™์ด ์ฃผ๊ฐ„(D1โ€“D4) ๋ฐ ์•ผ๊ฐ„ (N1โ€“N4) ์‹คํ—˜ ์œ ํ˜•๋ณ„๋กœ ๋ฐฐ์น˜ ํฌ๊ธฐ์™€ ์—ํญ ์ˆ˜๋ฅผ ๋‹ค๋ฅด๊ฒŒ ์„ค์ •ํ•˜์˜€๋‹ค. D1๊ณผ N1์€ ์‚ฌ์ „ ํ•™์Šต๋œ YOLO v9-e ๋ชจ๋ธ์˜ ๊ธฐ๋ณธ ์„ฑ๋Šฅ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•œ ์†Œ๊ทœ๋ชจ ํ•™์Šต์œผ๋กœ ์—ํญ ์ˆ˜๋ฅผ ์ตœ์†Œํ™”ํ•˜์˜€์œผ๋ฉฐ, D4์™€ N4๋Š” ์‹ค์ œ ๋ฐ ์ฆ๊ฐ• ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ๋ฅผ ํ˜ผํ•ฉํ•˜์—ฌ ํ•™์Šต๋Ÿ‰์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์—ํญ ์ˆ˜๋ฅผ ๋‹ค์†Œ ๋†’์—ฌ ์ตœ์ ์˜ ์„ฑ๋Šฅ์„ ๋„์ถœํ•˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค.

ํ‘œ 7. ์ฃผยท์•ผ๊ฐ„ ์‹คํ—˜ ์œ ํ˜•๋ณ„ batch ํฌ๊ธฐ์™€ epoch ์ˆ˜

Table 7. Batch Sizes and Epoch Numbers by Daytime/Nighttime Experiment Type

batch size epoch
D1ยทN1 32 10
D2ยทN2 32 80
D3ยทN3 32 80
D4ยทN4 32 100

๋ฐฐ์น˜ ํฌ๊ธฐ์™€ ์—ํญ์˜ ๊ตฌ์ฒด์ ์ธ ์ˆ˜์น˜๋Š” GPU ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰๊ณผ ํ•™์Šต ์•ˆ์ •์„ฑ ๊ทธ๋ฆฌ๊ณ  ์‚ฌ์ „ ์‹คํ—˜์˜ ๊ฒฐ๊ณผ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ๋ฐฐ์น˜ ํฌ๊ธฐ์™€ ์—ํญ ์ˆ˜๋ฅผ ์„ค์ •ํ•˜์˜€๋‹ค. ์ด๋Š” ์ฆ๊ฐ• ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ํฌํ•จํ•œ ์ „์ฒด ํ•™์Šต ์ด๋ฏธ์ง€ ์ˆ˜ ๋Œ€๋น„ ์ ์ ˆํ•œ ๊ท ํ˜•์„ ์ด๋ฃจ๋ฉฐ, ํ•™์Šต ์•ˆ์ •์„ฑ๊ณผ ์ˆ˜๋ ด ์†๋„ ๊ฐ„์˜ trade-off๋ฅผ ๊ณ ๋ คํ•œ ์ˆ˜์น˜์ด๋‹ค.

4. ์‹คํ—˜ ๋ฐ ํ‰๊ฐ€

4.1 ์‹คํ—˜ ํ™˜๊ฒฝ

๊ฐ•์šฐ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ๋ฐ ๋„๋กœ ๊ตํ†ต ๊ฐ์ฒด ๊ฒ€์ถœ ์‹คํ—˜์„ ์œ„ํ•ด <ํ‘œ 8>๊ณผ <ํ‘œ 9>์— ์ œ์‹œ๋œ ํ•˜๋“œ์›จ์–ด ๋ฐ ์†Œํ”„ํŠธ์›จ์–ด ๊ตฌ์„ฑ์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ฐ์ฒด ๊ฒ€์ถœ ์‹œ ๋ฐ์ดํ„ฐ ๋กœ๋”ฉ ์†๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•ด ์ถฉ๋ถ„ํ•œ ๋ฉ”์ธ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์บ์‹œ ์šฉ๋„๋กœ ํ• ๋‹นํ•˜์˜€์œผ๋ฉฐ, ์ฆ๊ฐ• ์ฒ˜๋ฆฌ์˜ ์›ํ™œํ•œ ์ˆ˜ํ–‰์„ ์œ„ํ•ด gpu(vga)์˜ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์ตœ๋Œ€ ์šฉ๋Ÿ‰์œผ๋กœ ๊ตฌ์„ฑํ•˜์˜€๋‹ค.

ํ‘œ 8. ํ•˜๋“œ์›จ์–ด ์‹คํ—˜ ํ™˜๊ฒฝ

Table 8. Software Experimental Environment

๊ตฌ์„ฑ ์š”์†Œ ์‚ฌ์–‘
cpu Intel(R) Xeon(R) Platinum 8480+
ram 200GB
vga NVIDIA H100 80GB
storage 1TB

ํ‘œ 9. ์†Œํ”„ํŠธ์›จ์–ด ์‹คํ—˜ ํ™˜๊ฒฝ

Table 9. Hardware Experimental Environment

๊ตฌ์„ฑ ์š”์†Œ ์‚ฌ์–‘
os ubuntu 24.04.01 LTS
python python 3.11.11
cuda cuda 12.8
cuDNN cuDNN 9.5.1
torch 2.7.0+cu126

4.2 ๊ฐ•์šฐ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„

3.5์ ˆ์˜ ์‹คํ—˜ ์œ ํ˜•๋ณ„ ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์„ฑ์— ํฌํ•จ๋˜์–ด ์žˆ๋Š” D3 ์‹คํ—˜๊ณผ N3 ์‹คํ—˜์€ ๊ฐ•์šฐ ์Šคํƒ€์ผ์˜ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์„ ํ•„์š”๋กœ ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์ ˆ์—์„œ๋Š” CycleGAN Turbo๋ฅผ ํ™œ์šฉํ•œ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•œ๋‹ค.

๊ทธ๋ฆผ 13. ์ฃผ๊ฐ„ ์›๋ณธ ์ด๋ฏธ์ง€์™€ ์ฆ๊ฐ• ์ด๋ฏธ์ง€์˜ ์ƒ˜ํ”Œ ๋ฐ ๋น„๊ต

Fig. 13. Sample and Comparison of Original and Augmented Daytime Images

../../Resources/kiee/KIEE.2025.74.12.2287/fig13.png

๊ทธ๋ฆผ 14. ์•ผ๊ฐ„ ์›๋ณธ ์ด๋ฏธ์ง€์™€ ์ฆ๊ฐ• ์ด๋ฏธ์ง€์˜ ์ƒ˜ํ”Œ ๋ฐ ๋น„๊ต

Fig. 14. Sample and Comparison of Original and Augmented Nighttime Images

../../Resources/kiee/KIEE.2025.74.12.2287/fig14.png

๊ทธ๋ฆผ 13๊ณผ ๊ทธ๋ฆผ 14๋Š” ๊ฐ๊ฐ ์ฃผยท์•ผ๊ฐ„ ๋ง‘์€ ๊ธฐ์ƒ ์ด๋ฏธ์ง€์— CycleGAN Turbo๋ฅผ ์ ์šฉํ•˜์—ฌ ๊ฐ•์šฐ ์Šคํƒ€์ผ๋กœ ๋ณ€ํ™˜ํ•œ ์ฆ๊ฐ• ์ƒ˜ํ”Œ์ด๋‹ค. ์ฆ๊ฐ• ํ›„ ๋„๋กœ ํ‘œ๋ฉด์—๋Š” ๋น—๋ฐฉ์šธ์ด ๋งบํžŒ ์งˆ๊ฐ์ด ๊ตฌํ˜„๋˜์—ˆ์œผ๋ฉฐ, ์ „๋ฐ˜์ ์œผ๋กœ ํ๋ฆฟํ•œ ์•ˆ๊ฐœ ํšจ๊ณผ๊ฐ€ ์ถ”๊ฐ€๋˜์—ˆ๋‹ค. ์ค‘์•™์˜ ๊ฒ€์ •์ƒ‰ ์  ํ˜•ํƒœ ๋…ธ์ด์ฆˆ๋Š” ๊ฐ•์šฐ๋กœ ์ธํ•œ ๋ฌผ๋ฐฉ์šธ ๋ฐ˜์‚ฌ๋ฅผ ๋ชจ๋ธ์ด ์ถ”๋ก ํ•˜์—ฌ ํ‘œํ˜„ํ•œ ๊ฒฐ๊ณผ์ด๋‹ค.

4.3 ๋„๋กœ ๊ตํ†ต ๊ฐ์ฒด ํƒ์ง€ ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„

4.3.1 ๋„๋กœ ๊ตํ†ต ๊ฐ์ฒด ํƒ์ง€ ์‹คํ—˜ ํ•™์Šต ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„

3.4์ ˆ๊ณผ 3.5์ ˆ์—์„œ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•๊ณผ ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ๋Œ€๋กœ ๋„๋กœ ๊ตํ†ต ๊ฐ์ฒด์˜ ๊ฒ€์ถœ ์‹คํ—˜์€ ์ฃผ๊ฐ„๊ณผ ์•ผ๊ฐ„์˜ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ ๋‚˜๋ˆ„์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ฐ๊ฐ์˜ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•ด์„œ 4๊ฐ€์ง€ ์‹คํ—˜์„ ์ˆ˜ํ–‰ ํ›„ ํ•™์Šต ๊ฒฐ๊ณผ(๊ฒ€์ฆ ๊ฒฐ๊ณผ)์— ๋Œ€ํ•ด์„œ ๋ถ„์„ํ•œ๋‹ค

<ํ‘œ 10>์€ ์ฃผ๊ฐ„ ๊ธฐ์ƒ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ ๋„ค ๊ฐ€์ง€ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•œ ๊ฒฐ๊ณผ ์ง€ํ‘œ๋ฅผ ๋‚˜ํƒ€๋‚ธ ํ‘œ์ด๋‹ค. ์ฃผ๊ฐ„ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ๋„ค ๊ฐ€์ง€ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•œ ๊ฒฐ๊ณผ, ์‚ฌ์ „ ํ•™์Šต๋œ YOLO v9-e ๋ชจ๋ธ์˜ ๊ธฐ๋ณธ ์„ฑ๋Šฅ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•œ D1 ์‹คํ—˜์—์„œ๋Š” ๋ง‘์€ ๊ธฐ์ƒ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ ํ•™์Šตํ•˜๊ณ  ์‹ค์ œ ๊ฐ•์šฐ ์ด๋ฏธ์ง€๋ฅผ ๊ฒ€์ฆ ์„ธํŠธ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ๋‚ฎ์€ mAP ๊ฐ’์„ ๊ธฐ๋กํ•˜์˜€์œผ๋‚˜ ์‹คํ—˜ ์„ค๊ณ„์˜ ํƒ€๋‹น์„ฑ์„ ํ™•๋ณดํ•˜์˜€์œผ๋ฉฐ, ๋ง‘์€ ๊ธฐ์ƒ๊ณผ ์‹ค์ œ ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ๋ฅผ ํ˜ผํ•ฉ ํ•™์Šตํ•œ D2 ์‹คํ—˜๊ณผ ๋ง‘์€ ๊ธฐ์ƒ๊ณผ ์ฆ๊ฐ• ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ๋ฅผ ํ˜ผํ•ฉ ํ•™์Šตํ•œ D3 ์‹คํ—˜์—์„œ๋Š” mAP@0.50 ๊ธฐ์ค€์œผ๋กœ 0.003 ํฌ์ธํŠธ ์ฐจ์ด๋กœ ๊ฑฐ์˜ ๋™์ผํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ ์ฆ๊ฐ• ๋ฐ์ดํ„ฐ๊ฐ€ ์‹ค์ œ ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ์™€ ๋™๋“ฑํ•œ ํ•™์Šต ํšจ๊ณผ๋ฅผ ๋ƒ„์„ ์ž…์ฆํ•˜์˜€๊ณ , ๋ง‘์€ ๊ธฐ์ƒ, ์‹ค์ œ ๊ฐ•์šฐ, ์ฆ๊ฐ• ๊ฐ•์šฐ ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋‘ ํ†ตํ•ฉ ํ•™์Šตํ•œ D4 ์‹คํ—˜์—์„œ๋Š” ๋ชจ๋“  ํ‰๊ฐ€ ์ง€ํ‘œ์—์„œ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ ๋‹ค์–‘ํ•œ ์šฐ์ฒœ ์กฐ๊ฑด์— ๋Œ€ํ•œ ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ๊ทน๋Œ€ํ™”ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค.

ํ‘œ 10. ์ฃผ๊ฐ„ ๊ธฐ์ƒ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋„ค ๊ฐ€์ง€ ์‹คํ—˜ ๊ฒฐ๊ณผ ์ง€ํ‘œ

Table 10. Performance Metrics of Four Experiments on Daytime Weather Data

์‹คํ—˜ Precision Recall mAP@0.50 mAP@0.50:0.95
D1 0.769 0.588 0.657 0.452
D2 0.862 0.742 0.817 0.601
D3 0.859 0.736 0.814 0.598
D4 0.868 0.753 0.828 0.611

๊ทธ๋ฆผ 15๋Š” ์ฃผ๊ฐ„ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•ด์„œ ์‹คํ—˜ ์œ ํ˜•๋ณ„ ํ•™์Šต ๊ฒฐ๊ณผ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ๋น„๊ตํ•œ ๊ทธ๋ž˜ํ”„์ด๋‹ค.

๊ทธ๋ฆผ 15. ์ฃผ๊ฐ„ ์‹คํ—˜ ๋ชจ๋ธ๋ณ„ ํ•™์Šต ๊ฒฐ๊ณผ ํ‰๊ฐ€ ์ง€ํ‘œ ๋น„๊ต ๊ทธ๋ž˜ํ”„

Fig. 15. Comparison Graph of Evaluation Metrics for Daytime Experimental Models

../../Resources/kiee/KIEE.2025.74.12.2287/fig15.png

<ํ‘œ 11>์€ ์•ผ๊ฐ„ ๊ธฐ์ƒ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ ๋„ค ๊ฐ€์ง€ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•œ ๊ฒฐ๊ณผ ์ง€ํ‘œ๋ฅผ ๋‚˜ํƒ€๋‚ธ ํ‘œ์ด๋‹ค. ์ถœ๋ ฅ ํด๋ž˜์Šค ์ˆ˜ ๋ณด์ • ๋ฐ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์˜ ๊ธฐ๋ณธ ์„ฑ๋Šฅ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•œ N1 ์‹คํ—˜์—์„œ๋Š” ๋‚ฎ์€ mAP ๊ฐ’์„ ๊ธฐ๋กํ•˜์˜€์œผ๋‚˜ ์‹คํ—˜ ์„ค๊ณ„์˜ ํƒ€๋‹น์„ฑ์„ ํ™•๋ณดํ•˜์˜€๊ณ , ์‹ค์ œ ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šตํ•œ N2 ์‹คํ—˜๊ณผ ์ฆ๊ฐ• ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šตํ•œ N3 ์‹คํ—˜์—์„œ๋Š” ์‹ค์ œ ๊ฐ•์šฐ ํ•™์Šต์ด ๋‹ค์†Œ ์šฐ์ˆ˜ํ–ˆ์œผ๋‚˜ ๊ทธ ์ฐจ์ด๋Š” ๋ฏธ๋ฏธํ•˜์˜€์œผ๋ฉฐ, ์‹ค์ œ ๋ฐ ์ฆ๊ฐ• ๊ฐ•์šฐ ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋‘ ํ†ตํ•ฉ ํ•™์Šตํ•œ N4 ์‹คํ—˜์—์„œ๋Š” ๋ชจ๋“  ์ง€ํ‘œ์—์„œ ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ ํ–ฅ์ƒ์ด ๊ด€์ฐฐ๋˜์–ด ๊ฐ•๊ฑด์„ฑ์ด ์œ ์ง€๋จ์„ ํ™•์ธํ–ˆ๋‹ค. ๊ทธ๋ฆผ 16์€ ์•ผ๊ฐ„ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•ด์„œ ์‹คํ—˜ ์œ ํ˜•๋ณ„ ํ•™์Šต ๊ฒฐ๊ณผ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ๋น„๊ตํ•œ ๊ทธ๋ž˜ํ”„์ด๋‹ค.

ํ‘œ 11. ์•ผ๊ฐ„ ๊ธฐ์ƒ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋„ค ๊ฐ€์ง€ ์‹คํ—˜ ๊ฒฐ๊ณผ ์ง€ํ‘œ

Table 11. Performance Metrics of Four Experiments on Nighttime Weather Data

์‹คํ—˜ Precision Recall mAP@0.50 mAP@0.50:0.95
N1 0.760 0.599 0.662 0.445
N2 0.838 0.774 0.828 0.597
N3 0.835 0.736 0.798 0.573
N4 0.843 0.783 0.834 0.601

๊ทธ๋ฆผ 16. ์•ผ๊ฐ„ ์‹คํ—˜ ๋ชจ๋ธ๋ณ„ ํ•™์Šต ๊ฒฐ๊ณผ ํ‰๊ฐ€ ์ง€ํ‘œ ๋น„๊ต ๊ทธ๋ž˜ํ”„

Fig. 16. Comparison Graph of Evaluation Metrics for Nighttime Experimental Models

../../Resources/kiee/KIEE.2025.74.12.2287/fig16.png

4.3.2 ๋„๋กœ ๊ตํ†ต ๊ฐ์ฒด ํƒ์ง€ ์‹คํ—˜ ์‹œํ—˜ ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„

4.3.1์ ˆ์—์„œ ์ „์ด ํ•™์Šตํ•œ ๋ชจ๋ธ์˜ ๊ฐ€์ค‘์น˜ ๊ฒฐ๊ณผ๋ฅผ ์ด์šฉํ•˜์—ฌ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•ด์„œ ๊ฐ์ฒด ํƒ์ง€ ์‹คํ—˜ ํ›„ ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•œ๋‹ค.

<ํ‘œ 12>์™€ <ํ‘œ 13>์€ ๊ฐ๊ฐ ์ฃผ๊ฐ„ ๋ฐ์ดํ„ฐ ์„ธํŠธ์™€ ์•ผ๊ฐ„ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ ๊ฐ๊ฐ์˜ ํ…Œ์ŠคํŠธ ์„ธํŠธ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฐ ์‹คํ—˜ ๋ณ„๋กœ ์ถ”๋ก ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ธ ํ‘œ์ด๋‹ค. 3.5 ์ ˆ์˜ ์‹คํ—˜ ์œ ํ˜•๋ณ„ ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์„ฑ์—์„œ ๊ธฐ์ˆ ํ•œ ๋ฐ”์™€ ๊ฐ™์ด ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋ง‘์€ ๊ธฐ์ƒ๊ณผ ์‹ค์ œ ๊ฐ•์šฐ ๊ธฐ์ƒ์˜ ๋ฐ์ดํ„ฐ๋กœ ๊ตฌ์„ฑ๋œ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ ์„ธํŠธ์™€ ๋‹ฌ๋ฆฌ ์‹ค์ œ ๊ฐ•์šฐ ๊ธฐ์ƒ์˜ ๋ฐ์ดํ„ฐ๋กœ๋งŒ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค.

ํ‘œ 12. ํ…Œ์ŠคํŠธ ์„ธํŠธ์— ๋Œ€ํ•œ ํด๋ž˜์Šค, ์ฃผ๊ฐ„ ์‹คํ—˜ ์œ ํ˜•๋ณ„ mAP@0.50์ง€ํ‘œ

Table 12. Class-wise mAP@0.50 Metrics for Daytime Experiment Types on the Test Set

D1 D2 D3 D4
all 0.637 0.884 0.825 0.884
bicycle 0.571 0.821 0.796 0.826
bus 0.687 0.939 0.898 0.940
car 0.853 0.949 0.918 0.949
person 0.360 0.807 0.665 0.806
truck 0.717 0.902 0.847 0.897

ํ‘œ 13. ํ…Œ์ŠคํŠธ ์„ธํŠธ์— ๋Œ€ํ•œ ํด๋ž˜์Šค, ์•ผ๊ฐ„ ์‹คํ—˜ ์œ ํ˜•๋ณ„ mAP@0.50์ง€ํ‘œ

Table 13. Class-wise mAP@0.50 Metrics for Nighttime Experiment Types on the Test Set

N1 N2 N3 N4
all 0.703 0.876 0.831 0.892
bicycle 0.657 0.923 0.843 0.936
bus 0.733 0.886 0.883 0.905
car 0.905 0.964 0.930 0.969
person 0.368 0.691 0.574 0.724
truck 0.853 0.915 0.924 0.929

์‹ค์ œ ๊ฐ•์šฐ ๊ธฐ์ƒ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ ๊ตฌ์„ฑ๋œ ํ…Œ์ŠคํŠธ ์„ธํŠธ์— ๋Œ€ํ•œ ์ถ”๋ก  ๊ฒฐ๊ณผ, ์ฆ๊ฐ• ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ(D3, N3)๋Š” ์‹ค์ œ ๊ฐ•์šฐ ๋ฐ์ดํ„ฐ(D2, N2)์— ๋น„ํ•ด ์ „์ฒด ํด๋ž˜์Šค ๊ธฐ์ค€ mAP@0.50์ด ์ฃผ๊ฐ„์—์„œ ์•ฝ 0.059, ์•ผ๊ฐ„์—์„œ ์•ฝ 0.045 ๋‚ฎ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์„ธ๋ถ€์ ์œผ๋กœ๋Š” personยทbicycle ๋“ฑ์˜ ์†Œํ˜• ๊ฐ์ฒด์—์„œ ์ตœ๋Œ€ 0.142๊นŒ์ง€ ์„ฑ๋Šฅ ์ฐจ์ด๊ฐ€ ์ง‘์ค‘๋˜์—ˆ์œผ๋‚˜, busยทtruck ๋“ฑ ๋Œ€ํ˜• ์ฐจ๋Ÿ‰์—์„œ๋Š” ๊ฑฐ์˜ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. ์ด๋Š” ์†Œํ˜• ๊ฐ์ฒด์˜ ๋ฐ์ดํ„ฐ์˜ ์–‘์ด ์ถฉ๋ถ„ํ•˜์ง€ ๋ชปํ•œ ํ•œ๊ณ„์™€ CycleGAN Turbo๊ฐ€ ์ฐจ๋Ÿ‰ ์‹ค๋ฃจ์—ฃ๊ณผ ๋ฐฐ๊ฒฝ ํŒจํ„ด์„ ์ถฉ๋ถ„ํžˆ ์žฌํ˜„ํ–ˆ์œผ๋‚˜, ์†Œํ˜• ๊ฐ์ฒด์˜ ๋ฏธ์„ธ ์งˆ๊ฐ๊ณผ ์•ผ๊ฐ„ ๊ธ€๋ ˆ์–ดยท๋ชจ์…˜ ๋ธ”๋Ÿฌ๊นŒ์ง€ ์™„๋ฒฝํžˆ ๋ชจ์‚ฌํ•˜์ง€ ๋ชปํ•œ ํ•œ๊ณ„๋กœ ํ•ด์„๋œ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋Œ€ํ˜• ๊ตํ†ต ๊ฐ์ฒด์— ํ•œ์ •ํ•˜๋ฉด ์ฆ๊ฐ• ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ๋„ ์‹ค์ œ ๋ฐ์ดํ„ฐ ์ˆ˜์ค€์˜ ๊ฒ€์ถœ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค.

๋˜ํ•œ ํ…Œ์ŠคํŠธ ์„ธํŠธ์—์„œ๋„ ์‹ค์ œ ๊ฐ•์šฐ์™€ ์ฆ๊ฐ• ๊ฐ•์šฐ ์ด๋ฏธ์ง€๋ฅผ ํ˜ผํ•ฉ ํ•™์Šตํ•œ D4ยทN4 ์‹คํ—˜์ด ์—ฌ์ „ํžˆ ์ตœ๊ณ  ์„ฑ๋Šฅ์„ ๊ธฐ๋กํ•˜์—ฌ, ํ˜ผํ•ฉ ์ฆ๊ฐ• ๋ฐฉ์‹์ด ๋ชจ๋ธ์˜ ๊ฐ•๊ฑด์„ฑ ํ™•๋ณด์— ๊ฐ€์žฅ ํšจ๊ณผ์ ์ž„์„ ์žฌํ™•์ธํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 17์€ ๋ชจ๋“  ์‹คํ—˜์˜ ํด๋ž˜์Šค๋ณ„ mAP@0.50 ๊ฐ’์„ ์‹œ๊ฐ์ ์œผ๋กœ ๋น„๊ตํ•œ ํžˆํŠธ๋งต ๊ทธ๋ž˜ํ”„์ด๋‹ค.

๊ทธ๋ฆผ 17. ํ…Œ์ŠคํŠธ ์„ธํŠธ์— ๋Œ€ํ•œ ํด๋ž˜์Šค, ์ฃผยท์•ผ๊ฐ„ ์‹คํ—˜ ์œ ํ˜•๋ณ„ mAP@0.50 ์ง€ํ‘œ ํžˆํŠธ๋งต

Fig. 17. Heatmap of Class-wise mAP@0.50 Metrics for Daytime and Nighttime Experiment Types on the Test Set

../../Resources/kiee/KIEE.2025.74.12.2287/fig17.png

4.3.3 ์ฃผยท์•ผ๊ฐ„ ๋ชจ๋ธ๊ณผ ์ฃผยท์•ผ๊ฐ„ ๋ฐ์ดํ„ฐ์˜ ๊ต์ฐจ ์ถ”๋ก  ์‹คํ—˜ ๊ฒฐ๊ณผ

์ฃผ๊ฐ„ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šตํ•œ ๋ชจ๋ธ์— ์•ผ๊ฐ„์˜ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๋กœ ์ถ”๋ก ํ•˜๊ณ  ์•ผ๊ฐ„ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šตํ•œ ๋ชจ๋ธ์— ์ฃผ๊ฐ„ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๋กœ ์ถ”๋ก ํ•˜์—ฌ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ๊ณผ ๋„๋ฉ”์ธ ์ ์‘ ๋Šฅ๋ ฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ์ถ”๊ฐ€์ ์ธ ๊ต์ฐจ ์ถ”๋ก  ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค.

<ํ‘œ 14>๋Š” ์ฃผยท์•ผ๊ฐ„ ํ•™์Šต ๋ชจ๋ธ๊ณผ ์ฃผยท์•ผ๊ฐ„ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ๊ต์ฐจ๋กœ ์ถ”๋ก ํ•œ ์‹คํ—˜์˜ ๊ฒฐ๊ณผ์ด๋‹ค. ๊ต์ฐจ ์ถ”๋ก  ์‹คํ—˜์—์„œ ์•ผ๊ฐ„ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต๋œ ๋ชจ๋ธ(N1, N2, N3, N4)์€ ์ „๋ฐ˜์ ์œผ๋กœ ์ฃผ๊ฐ„ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต๋œ ๋ชจ๋ธ(D1, D2, D3, D4)๋ณด๋‹ค ๋” ๋†’์€ mAP ๊ฐ’์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ์ด๋Š” ์•ผ๊ฐ„ ํ•™์Šต ๋ชจ๋ธ์ด ๋ณด๋‹ค ๊ฐ•๊ฑดํ•˜๊ฒŒ ํ•™์Šต๋˜์—ˆ์„ ๊ฐ€๋Šฅ์„ฑ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์•ผ๊ฐ„ ์ด๋ฏธ์ง€๋Š” ์กฐ๋ช… ๋ถ€์กฑ, ์ €์กฐ๋„, ๊ฐ์ฒด์˜ ๋ชจํ˜ธ์„ฑ ๋“ฑ์œผ๋กœ ์ธํ•ด ๊ฐ์ฒด ๊ฒ€์ถœ์— ๋ถˆ๋ฆฌํ•œ ์กฐ๊ฑด์„ ๊ฐ–๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์–ด๋ ค์šด ํ™˜๊ฒฝ์„ ํ•™์Šตํ•œ ๋ชจ๋ธ์€ ์ƒ๋Œ€์ ์œผ๋กœ ์ถ”๋ก ์— ๋ฐฉํ•ด ์š”์†Œ๊ฐ€ ์ ์€ ์ฃผ๊ฐ„ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด ๋” ์šฐ์ˆ˜ํ•œ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๋ณด์ผ ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋Œ€๋กœ, ์ฃผ๊ฐ„ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šตํ•œ ๋ชจ๋ธ๋“ค์€ ์ „์ฒด์ ์œผ๋กœ ๋‚ฎ์€ mAP ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ํ•™์Šต ๋ฐ์ดํ„ฐ์—๋Š” ์กด์žฌํ•˜์ง€ ์•Š์•˜๋˜ ์•ผ๊ฐ„ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ์ˆ˜ํ–‰๋œ D2 ์‹คํ—˜๊ณผ D3 ์‹คํ—˜์˜ ๊ฒฐ๊ด๊ฐ’์ด ์œ ์‚ฌํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚œ ์ ์€, ์ฆ๊ฐ• ๋ฐ์ดํ„ฐ๊ฐ€ ์‹ค์ œ ๋ฐ์ดํ„ฐ๋ฅผ ์ผ์ • ๋ถ€๋ถ„ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๊ทธ๋ฆผ 18์€ ๋ชจ๋“  ์‹คํ—˜์˜ ํด๋ž˜์Šค๋ณ„ mAP@0.50 ๊ฐ’์„ ์‹œ๊ฐ์ ์œผ๋กœ ๋น„๊ตํ•œ ํžˆํŠธ๋งต ๊ทธ๋ž˜ํ”„์ด๋‹ค.

ํ‘œ 14. ๊ต์ฐจ ์ถ”๋ก  ์‹คํ—˜ ๊ฒฐ๊ณผ

Table 14. Cross-Inference Experiment Results

D1 D2 D3 D4 N1 N2 N3 N4
all 0.454 0.704 0.680 0.726 0.597 0.839 0.767 0.845
bicycle 0.314 0.656 0.617 0.695 0.511 0.817 0.739 0.811
bus 0.338 0.669 0.599 0.701 0.611 0.857 0.826 0.860
car 0.737 0.870 0.842 0.879 0.843 0.930 0.919 0.934
person 0.335 0.626 0.622 0.654 0.362 0.761 0.542 0.781
truck 0.547 0.700 0.721 0.702 0.656 0.832 0.811 0.838

๊ทธ๋ฆผ 18. ์ฃผยท์•ผ๊ฐ„ ํ•™์Šต ๋ชจ๋ธ๊ณผ ์ฃผยท์•ผ๊ฐ„ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์˜ ๊ต์ฐจ ์ถ”๋ก  ๊ฒฐ๊ณผ

Fig. 18. Cross-Inference Results Between Daytime and Nighttime Training Models and Test Sets

../../Resources/kiee/KIEE.2025.74.12.2287/fig18.png

4. ๊ฒฐ ๋ก 

๊ฒฐ๋ก ์ ์œผ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” CycleGAN Turbo ๊ธฐ๋ฐ˜ ๊ฐ•์šฐ ์Šคํƒ€์ผ ์ฆ๊ฐ• ๊ธฐ๋ฒ•๊ณผ YOLO v9-e ๊ฒ€์ถœ ๋ชจ๋ธ์„ ๊ฒฐํ•ฉํ•œ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜์—ฌ, ์ฃผยท์•ผ๊ฐ„ ๋ฐ ๋ง‘์Œยท๊ฐ•์šฐ ๋“ฑ ๋‹ค์–‘ํ•œ ๊ธฐ์ƒยท์‹œ๊ฐ„๋Œ€ ํ™˜๊ฒฝ์—์„œ๋„ ๋†’์€ ๊ฐ์ฒด ๊ฒ€์ถœ ์„ฑ๋Šฅ์„ ์ž…์ฆํ•˜์˜€๋‹ค. ์ฆ๊ฐ• ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ๋„ ์‹ค์ œ ์šฐ์ฒœ ๋ฐ์ดํ„ฐ์™€ ์œ ์‚ฌํ•œ mAP ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ์‹ค์ œยท์ฆ๊ฐ• ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ฉ ํ•™์Šตํ•  ๋•Œ ์ตœ์ƒ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ๊ต์ฐจ ์ถ”๋ก  ์‹คํ—˜์„ ํ†ตํ•ด ์•ผ๊ฐ„ ํ•™์Šต ๋ชจ๋ธ์ด ์ฃผ๊ฐ„ ํ™˜๊ฒฝ์—์„œ๋„ ์šฐ์ˆ˜ํ•œ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ๋ณด์ž„์œผ๋กœ์จ, ์ €์กฐ๋„ยท์•…์ฒœํ›„ ์กฐ๊ฑด์—์„œ ํ•™์Šต๋œ ๋ชจ๋ธ์˜ ๊ฐ•๊ฑด์„ฑ์„ ๊ฒ€์ฆํ–ˆ๋‹ค. ์‹ค๋ฌด์ ์œผ๋กœ๋Š” GAN ๊ธฐ๋ฐ˜ ์ฆ๊ฐ•๋งŒ์œผ๋กœ ๋Œ€๊ทœ๋ชจ ๊ฐ•์šฐยท์•ผ๊ฐ„ ๋ฐ์ดํ„ฐ๋ฅผ ํšจ์œจ์ ์œผ๋กœ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์–ด, ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ์˜ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ๋ผ๋ฒจ๋ง ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์Šค๋งˆํŠธ ๊ตํ†ต ๊ด€์ œ๋‚˜ ์ž์œจ์ฃผํ–‰ ๋“ฑ ๋‹ค์–‘ํ•œ ์‘์šฉ ๋ถ„์•ผ์—์„œ ์ฆ‰์‹œ ํ™œ์šฉ ๊ฐ€๋Šฅํ•œ ์•ˆ์ •์„ฑ์„ ์ œ๊ณตํ•œ๋‹ค. ๋‹ค๋งŒ, ์†Œํ˜• ๊ฐ์ฒด์˜ ํƒ์ง€ ์„ฑ๋Šฅ ์ €ํ•˜์™€ ์•ผ๊ฐ„ ๋…ธ์ด์ฆˆ ํŠน์„ฑ์˜ ๋ถˆ์™„์ „ํ•œ ์žฌํ˜„, ๋ฐ์ดํ„ฐ์˜ ์ง€์—ญ ๋ฐ ์žฅ๋น„ ํŽธ์ค‘, ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜• ๋ฌธ์ œ ๋“ฑ์€ ์—ฌ์ „ํžˆ ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๊ณผ์ œ๋กœ ๋‚จ์•„ ์žˆ๋‹ค.

ํ–ฅํ›„ ์—ฐ๊ตฌ๋กœ๋Š”, ์ฒซ์งธ, CycleGAN Turbo ์™ธ์—๋„ Stable Diffusion, NeRF ๋“ฑ ๋‹ค์–‘ํ•œ ์ด๋ฏธ์ง€ ์ฆ๊ฐ• ๋ชจ๋ธ์„ ์ ์šฉํ•˜์—ฌ ์„ฑ๋Šฅ์„ ๋น„๊ตยท๋ถ„์„ํ•จ์œผ๋กœ์จ, ๊ธฐ์ƒ ์กฐ๊ฑด ์ „์ด์— ์ตœ์ ํ™”๋œ ๋ชจ๋ธ ๊ตฌ์กฐ๋ฅผ ๊ทœ๋ช…ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋‘˜์งธ, ํ˜„์žฌ ์—ฐ๊ตฌ๊ฐ€ ๊ตญ๋‚ด ํŠน์ • ์ง€์—ญ์˜ ๋„๋กœ ์˜์ƒ์— ๊ตญํ•œ๋˜์–ด ์žˆ์œผ๋ฏ€๋กœ, ํ•ด์™ธ ๊ตํ†ต ํ™˜๊ฒฝ์ด๋‚˜ ๋‹ค์–‘ํ•œ ๊ธฐํ›„ยท๋„๋กœ ๊ตฌ์กฐ๋ฅผ ํฌํ•จํ•œ ๋ฐ์ดํ„ฐ์…‹์„ ํ™œ์šฉํ•˜์—ฌ ์ œ์•ˆ ๊ธฐ๋ฒ•์˜ ์žฌํ˜„์„ฑ๊ณผ ์ผ๋ฐ˜ํ™” ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€์ฆํ•  ๊ณ„ํš์ด๋‹ค. ์•„์šธ๋Ÿฌ, ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๊ธฐ์ƒ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์ž๊ธฐ ์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜ ๋„๋ฉ”์ธ ์ ์‘(domain adaptation), ๋ฉ€ํ‹ฐํƒœ์Šคํฌ ๋ฐ ๋ฉ”ํƒ€๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํ†ตํ•ฉ ๋ชจ๋ธ ์„ค๊ณ„, ์‹ค์ œ ํ˜„์žฅ ๋ฐฐํฌ ํ›„ ์˜จ๋ผ์ธ ์—…๋ฐ์ดํŠธ(online adaptation) ๊ธฐ๋ฒ•์˜ ๊ฒฐํ•ฉ, ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์—์„œ์˜ ๊ฐ์ฒด ํƒ์ง€ ๋˜ํ•œ ํ–ฅํ›„ ๋ฐœ์ „ ๋ฐฉํ–ฅ์œผ๋กœ ์ œ์‹œํ•œ๋‹ค.

References

1 
L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, M. Pietikรคinen, 2020, Deep Learning for Generic Object Detection: A Survey, International Journal of Computer Vision, Vol. 128, No. 2, pp. 261-318DOI
2 
Y. Sun, Z. Sun, W. Chen, 2024, The Evolution of Object Detection Methods, Engineering Applications of Artificial Intelligence, Vol. 133, pp. 108458DOI
3 
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, 2016, You Only Look Once: Unified, Real-Time Object Detection, pp. 779-788Google Search
4 
S. Ren, K. He, R. Girshick, J. Sun, 2017, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 6, pp. 1137-1149Google Search
5 
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A. C. Berg, 2016, SSD: Single Shot MultiBox Detector, Vol. 9905, pp. 21-37DOI
6 
A. Bochkovskiy, C.-Y. Wang, H.-Y. M. Liao, 2020, YOLOv4: Optimal Speed and Accuracy of Object Detection, arXiv preprint, arXiv:2004.10934DOI
7 
A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, G. Ding, 2024, YOLOv10: Real-Time End-to-End Object Detection, Vol. 37, pp. 107984-108011DOI
8 
A. H. Khan, S. T. R. Rizvi, A. Dengel, 2024, Real-time Traffic Object Detection for Autonomous Driving, arXiv preprint, arXiv:2402.00128DOI
9 
N. Algiriyage, R. Prasanna, K. Stock, E. E. H. Doyle, D. Johnston, M. Punchihewa, S. Jayawardhana, 2021, Towards Real-time Traffic Flow Estimation Using YOLO and SORT from Surveillance Video Footage, pp. 40-48Google Search
10 
Z. Zheng, J. Zhao, J. Fan, 2025, A Complex Roadside Object Detection Model Based on Multi-scale Feature Pyramid Network, Scientific Reports, Vol. 15, pp. 15992DOI
11 
S. Zhang, Y. Li, H. Chen, X. Zhu, 2023, An Improved Multi-Scale YOLOv5s Algorithm for Traffic Object Detection in Complex Road Scenes, Electronics, Vol. 12, No. 4, pp. 878Google Search
12 
Y. Guo, Y. Yamamoto, H. Yaginuma, 2025, Vehicle Detection in CCTV with Global-Guided Self-Attention and Convolution, Complex & Intelligent Systems, Vol. 11, pp. 458DOI
13 
C. Sakaridis, D. Dai, L. Van Gool, 2021, ACDC: The Adverse Conditions Dataset with Correspondences for Semantic Driving Scene Understanding, pp. 10765-10775Google Search
14 
D. Dai, L. Van Gool, 2018, Dark Model Adaptation: Semantic Image Segmentation from Daytime to Nighttime, arXiv preprint, arXiv:1810.02575DOI
15 
S. Kumar, P. Asiamah, O. Jolaoso, U. Esiowu, 2025, Enhancing Image Classification with Augmentation: Data Augmentation Techniques for Improved Image Classification, arXiv preprint, arXiv:2502.18691DOI
16 
E. Goceri, 2023, Medical Image Data Augmentation: Techniques, Comparisons and Interpretations, Artificial Intelligence Review, Vol. 56, pp. 12561-12605DOI
17 
M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, H. Greenspan, 2018, GAN-based Synthetic Medical Image Augmentation for Increased CNN Performance in Liver Lesion Classification, Neurocomputing, Vol. 321, pp. 321-331DOI
18 
M. J. Chuquicusma, S. Hussein, J. Burt, U. Bagci, 2018, How to Fool Radiologists with Generative Adversarial Networks? A Visual Turing Test for Lung Cancer Diagnosis, pp. 240-244DOI
19 
S. R. Kim, 2023, A Study on the Accuracy Improvement of Traffic Object Detection using CycleGAN (Generative Adversarial Network), Ph.D. dissertationGoogle Search
20 
2021, Autonomous Driving Image Object Detection Dataset (Urban Driving Environment), AI HubURL
21 
2021, Autonomous Driving Image Object Detection Dataset (Rain, Fog and Other Adverse Weather Conditions), AI HubURL
22 
G. Parmar, T. Park, S. Narasimhan, J.-Y. Zhu, 2024, One-Step Image Translation with Text-to-Image Models, arXiv preprint, arXiv:2403.12036DOI
23 
G. Jocher, A. Stoken, J. Borovec, 2024, ultralytics/ultralytics: YOLOv9 โ€“ Vision Models, GitHub repositoryURL

์ €์ž์†Œ๊ฐœ

์œ ์Šนํ˜ธ(SeungHo You)
../../Resources/kiee/KIEE.2025.74.12.2287/au1.png

He received B.S degree(2018) and M.S degree(2025), Currently, he works at CONNECTVALUE Co.,, Korea. His research interests include machine learning, deep learning, data science, API development, and the design of scalable AI-based API platforms for real-world applications.

์ž„์žฌ์ถ˜(Jaechoon Lim)
../../Resources/kiee/KIEE.2025.74.12.2287/au2.png

He received B.S degree(1997) and M.S degree(2014), Currently, he works at DTONIC Co.,, Korea. His research interests include machine learning, deep learning, data science, API development, and the design of scalable AI-based API platforms for real-world applications.

๊น€์ง€์—ฐ(Jiyeon Kim)
../../Resources/kiee/KIEE.2025.74.12.2287/au3.png

She received B.S degree (1992), M.S degree (1997) and Ph.D degree (2008) from Inha University, Korea. Currently, she is the professor in College of Humanities and Arts, Daejin University, Korea. His research interests include database, big data analysis and recommendation.

์ •์ข…์ง„(Jongjin Jung)
../../Resources/kiee/KIEE.2025.74.12.2287/au4.png

He received B.S degree (1992), M.S degree (1995) and Ph.D degree (2000) from Inha University, Korea. Currently, he is the professor in Division of AI Convergence, Daejin University, Korea. His research interests include knowledge engineering, machine learning, deep learning, generative AI, agentic AI, large language models (LLMs), big data analysis, and recommendation.