• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, M. Pietikäinen, 2020, Deep Learning for Generic Object Detection: A Survey, International Journal of Computer Vision, Vol. 128, No. 2, pp. 261-318DOI
2 
Y. Sun, Z. Sun, W. Chen, 2024, The Evolution of Object Detection Methods, Engineering Applications of Artificial Intelligence, Vol. 133, pp. 108458DOI
3 
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, 2016, You Only Look Once: Unified, Real-Time Object Detection, pp. 779-788Google Search
4 
S. Ren, K. He, R. Girshick, J. Sun, 2017, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 6, pp. 1137-1149Google Search
5 
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A. C. Berg, 2016, SSD: Single Shot MultiBox Detector, Vol. 9905, pp. 21-37DOI
6 
A. Bochkovskiy, C.-Y. Wang, H.-Y. M. Liao, 2020, YOLOv4: Optimal Speed and Accuracy of Object Detection, arXiv preprint, arXiv:2004.10934DOI
7 
A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, G. Ding, 2024, YOLOv10: Real-Time End-to-End Object Detection, Vol. 37, pp. 107984-108011DOI
8 
A. H. Khan, S. T. R. Rizvi, A. Dengel, 2024, Real-time Traffic Object Detection for Autonomous Driving, arXiv preprint, arXiv:2402.00128DOI
9 
N. Algiriyage, R. Prasanna, K. Stock, E. E. H. Doyle, D. Johnston, M. Punchihewa, S. Jayawardhana, 2021, Towards Real-time Traffic Flow Estimation Using YOLO and SORT from Surveillance Video Footage, pp. 40-48Google Search
10 
Z. Zheng, J. Zhao, J. Fan, 2025, A Complex Roadside Object Detection Model Based on Multi-scale Feature Pyramid Network, Scientific Reports, Vol. 15, pp. 15992DOI
11 
S. Zhang, Y. Li, H. Chen, X. Zhu, 2023, An Improved Multi-Scale YOLOv5s Algorithm for Traffic Object Detection in Complex Road Scenes, Electronics, Vol. 12, No. 4, pp. 878Google Search
12 
Y. Guo, Y. Yamamoto, H. Yaginuma, 2025, Vehicle Detection in CCTV with Global-Guided Self-Attention and Convolution, Complex & Intelligent Systems, Vol. 11, pp. 458DOI
13 
C. Sakaridis, D. Dai, L. Van Gool, 2021, ACDC: The Adverse Conditions Dataset with Correspondences for Semantic Driving Scene Understanding, pp. 10765-10775Google Search
14 
D. Dai, L. Van Gool, 2018, Dark Model Adaptation: Semantic Image Segmentation from Daytime to Nighttime, arXiv preprint, arXiv:1810.02575DOI
15 
S. Kumar, P. Asiamah, O. Jolaoso, U. Esiowu, 2025, Enhancing Image Classification with Augmentation: Data Augmentation Techniques for Improved Image Classification, arXiv preprint, arXiv:2502.18691DOI
16 
E. Goceri, 2023, Medical Image Data Augmentation: Techniques, Comparisons and Interpretations, Artificial Intelligence Review, Vol. 56, pp. 12561-12605DOI
17 
M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, H. Greenspan, 2018, GAN-based Synthetic Medical Image Augmentation for Increased CNN Performance in Liver Lesion Classification, Neurocomputing, Vol. 321, pp. 321-331DOI
18 
M. J. Chuquicusma, S. Hussein, J. Burt, U. Bagci, 2018, How to Fool Radiologists with Generative Adversarial Networks? A Visual Turing Test for Lung Cancer Diagnosis, pp. 240-244DOI
19 
S. R. Kim, 2023, A Study on the Accuracy Improvement of Traffic Object Detection using CycleGAN (Generative Adversarial Network), Ph.D. dissertationGoogle Search
20 
2021, Autonomous Driving Image Object Detection Dataset (Urban Driving Environment), AI HubURL
21 
2021, Autonomous Driving Image Object Detection Dataset (Rain, Fog and Other Adverse Weather Conditions), AI HubURL
22 
G. Parmar, T. Park, S. Narasimhan, J.-Y. Zhu, 2024, One-Step Image Translation with Text-to-Image Models, arXiv preprint, arXiv:2403.12036DOI
23 
G. Jocher, A. Stoken, J. Borovec, 2024, ultralytics/ultralytics: YOLOv9 – Vision Models, GitHub repositoryURL