• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Railway Electrical Signaling Engineering, Graduate School of Railway, Seoul National University of Science and Technology, Republic of Korea. E-mail : ikojino@nate.com)



Railway Signaling, Impedance Bond, Condition Monitoring, Artificial Intelligence (AI), Simulation

1. ์„œ ๋ก 

์ „๊ธฐ์ฒ ๋„ ์‹œ์Šคํ…œ์—์„œ ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ๋Š” ์ „๋ ฅ ๊ณต๊ธ‰๊ณผ ์‹ ํ˜ธ ์ „์†ก์ด ๋™์ผํ•œ ๋ ˆ์ผ์„ ์‚ฌ์šฉํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ ํ•ต์‹ฌ์ ์ธ ๊ธฐ๋Šฅ์„ ๋‹ด๋‹นํ•œ๋‹ค. ์—ด์ฐจ์˜ ๊ฒฌ์ธ ์ „๋ฅ˜๋Š” ์ˆ˜๋ฐฑ ์•”ํŽ˜์–ด์— ์ด๋ฅด๋ฉฐ ๋‘ ๋ ˆ์ผ์„ ํ†ตํ•ด ๊ท€ํ™˜ํ•œ๋‹ค. ๋งŒ์•ฝ ์ด ์ „๋ฅ˜๊ฐ€ ์‹ ํ˜ธํšŒ๋กœ์— ์ง์ ‘ ๊ฐ„์„ญํ•˜๋ฉด ์—ด์ฐจ ๊ฒ€์ง€์™€ ์ œ์–ด ๊ธฐ๋Šฅ์ด ์ •์ƒ์ ์œผ๋กœ ๋™์ž‘ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ๋Š” ๋ ˆ์ผ๊ณผ ๋ณ‘๋ ฌ๋กœ ์—ฐ๊ฒฐ๋˜์–ด 60 Hz์˜ ์ „๋ ฅ ์ฃผํŒŒ์ˆ˜์—์„œ๋Š” ๋‚ฎ์€ ์ž„ํ”ผ๋˜์Šค๋ฅผ ์ œ๊ณตํ•˜์—ฌ ๊ท€์„  ์ „๋ฅ˜๊ฐ€ ์›ํ™œํžˆ ํ๋ฅด๋„๋ก ํ•˜๋ฉฐ, 1,700 Hz์˜ ์‹ ํ˜ธ ์ฃผํŒŒ์ˆ˜์—์„œ๋Š” ๋†’์€ ์ž„ํ”ผ๋˜์Šค๋ฅผ ํ˜•์„ฑํ•˜์—ฌ ๊ถค๋„ํšŒ๋กœ์™€ ์‹ ํ˜ธํšŒ๋กœ๊ฐ€ ์ƒํ˜ธ ๊ฐ„์„ญ ์—†์ด ๋…๋ฆฝ์ ์œผ๋กœ ์šด์šฉ๋˜๋„๋ก ํ•œ๋‹ค. ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ๋Š” ์•ˆ์ „ํ•œ ์‹ ํ˜ธ ์šด์˜๊ณผ ์•ˆ์ •์ ์ธ ์ „๋ ฅ ์ „์†ก์„ ๋™์‹œ์— ๋ณด์žฅํ•˜๋Š” ํ•„์ˆ˜ ์žฅ์น˜๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค[1][2].

์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ๋Š” ์„ ๋กœ ๋ณ€์— ์„ค์น˜๋˜๋Š” ๋งŒํผ ๋‹ค์–‘ํ•œ ์—ดํ™” ๋ฐ ์—ฌ๋Ÿฌ ๊ณ ์žฅ ์š”์ธ์— ๋…ธ์ถœ๋  ์ˆ˜ ์žˆ๋‹ค. ์ ‘์†๋ถ€์˜ ์ฒด๊ฒฐ ์ด์™„, ๊ถŒ์„  ๋‹จ๋ฝ, ์ ˆ์—ฐ ํŒŒ๊ดด, ์™ธ๋ถ€ ํ™˜๊ฒฝ ๋ฐ ๋‚ด๋ถ€ ๋ฐœ์—ด ๋“ฑ์— ์˜ํ•ด ์ „๊ธฐ์  ํŠน์„ฑ์ด ๋ณ€ํ•˜์—ฌ ๊ถค๋„ํšŒ๋กœ์˜ ์ •์ƒ์ ์ธ ๋™์ž‘์„ ๋ฐฉํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์ƒ ํ˜„์ƒ์€ ๊ถค๋„ํšŒ๋กœ์—์„œ ์ž„ํ”ผ๋˜์Šค์˜ ๋ถˆ์ผ์น˜๋‚˜ ์ „์•• ๊ฐ•ํ•˜, ์ „๋ฅ˜ ๋ถˆํ‰ํ˜• ๋ฐ ์ฃผํŒŒ์ˆ˜ ์™œ๊ณก ๋“ฑ์œผ๋กœ ๋‚˜ํƒ€๋‚˜๋ฉฐ, ๊ฒฝ์šฐ์— ๋”ฐ๋ผ์„œ๋Š” ๊ถค๋„ ์ ์œ  ๊ฒ€์ง€ ์˜ค๋ฅ˜๋‚˜ ์‹ ํ˜ธ ์˜ค๋™์ž‘, ์—ด์ฐจ ์ง€์—ฐ ๋“ฑ์˜ ์›์ธ์ด ๋˜์–ด ์•ˆ์ „์‚ฌ๊ณ ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค[1][3].

๊ธฐ์กด์˜ ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ์ ๊ฒ€ ๋ฐฉ์‹์€ ์ฃผ๋กœ ์ฃผ๊ธฐ์ ์ธ ์ ๊ฒ€์œผ๋กœ ์œก์•ˆ ํ™•์ธ๊ณผ ์ ˆ์—ฐ ์ €ํ•ญ ์ธก์ • ๋ฐ ์ •์ƒ ๋ฒ”์œ„ ๊ธฐ์ค€ ์ „๋ฅ˜ยท์ „์•• ๊ฐ’์„ ๋„์ถœํ•˜๋Š” ์ถ”์ • ๋ฐฉ์‹์— ์˜์กดํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ๊ฒ€ ๋ฐฉ์‹์€ ํ˜„์žฅ ์ ‘๊ทผ์„ฑ, ์ธ๋ ฅ ์˜์กด๋„, ๋น„์šฉ ๋ฌธ์ œ ๋“ฑ์˜ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๋ฉฐ ์ง„๋™์ด๋‚˜ ์˜จ๋„, ์Šต๊ธฐ ๊ฐ™์€ ๋ณตํ•ฉ์  ํ™˜๊ฒฝ ์š”์ธ์œผ๋กœ ์ธก์ • ์˜ค์ฐจ๋‚˜ ๊ฒ€์ถœ ๊ฒฐ๊ณผ์˜ ๋ถˆํ™•์‹ค์„ฑ์ด ๋ฐœ์ƒํ•œ๋‹ค. ๋˜ํ•œ ์ ๊ฒ€ ์ฃผ๊ธฐ ์‚ฌ์ด์— ๋Œ๋ฐœ ์ด์ƒ์ด ๋ฐœ์ƒํ•  ๊ฒฝ์šฐ ์œ ์ง€๋ณด์ˆ˜ ์‹œ์ ์ด ์ง€์—ฐ๋˜๊ฑฐ๋‚˜ ๊ณ ์žฅ ์ง„๋‹จ์ด ๋Šฆ์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค[1].

์ตœ๊ทผ์—๋Š” ์—ฌ๋Ÿฌ ๋ถ„์•ผ์—์„œ ์ธ๊ณต์ง€๋Šฅ(Artificial Intelligence, AI)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์ƒํƒœ ๋ชจ๋‹ˆํ„ฐ๋ง์ด ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌยท์ ์šฉ๋˜๊ณ  ์žˆ๋‹ค. AI๋Š” ๋‹ค์–‘ํ•œ ๋‹ค๋ณ€๋Ÿ‰ ์„ผ์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์ •์ƒ ๋ฒ”์œ„ ๊ธฐ๋ฐ˜ ๊ฐ์‹œ ๋ฐฉ์‹๋ณด๋‹ค ๋†’์€ ์ •ํ™•๋„์™€ ์‹ ๋ขฐ๋„๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๋น„์„ ํ˜•์  ์ด์ƒ ํŒจํ„ด์„ ์ž๋™์œผ๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์ฒ ๋„ ์‹ ํ˜ธ ๋ฐ ์ „๋ ฅ ์„ค๋น„ ๊ฐ™์€ ์ง„๋‹จ ๋ถ„์•ผ์—์„œ๋„ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๋‹ค[4][5][6]. ์ฒ ๋„ ์‹œ์Šคํ…œ์˜ ์ „์••, ์ „๋ฅ˜, ์ฃผํŒŒ์ˆ˜, ์˜จ๋„์ฐจ(ฮ”T) ๊ฐ™์€ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์— ์ ํ•ฉํ•œ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜๋ฉด ํšจ๊ณผ์ ์ด๊ณ  ์˜ˆ์ธก ๊ฐ€๋Šฅํ•œ ๋ชจ๋ธ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค.

๋ณธ ์—ฐ๊ตฌ๋Š” ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ์˜ ์ •์ƒ ๋ฐ ๋น„์ •์ƒ ์ƒํƒœ๋ฅผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ ์žฌํ˜„ํ•˜๊ณ , ์ด๋ฅผ ํ•™์Šต ๊ฐ€๋Šฅํ•œ ์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋กœ ๊ตฌ์„ฑํ•˜์—ฌ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๋ชจ๋‹ˆํ„ฐ๋ง ๊ธฐ๋ฒ•์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€ํ† ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํ–ฅํ›„ ์ฒ ๋„ ์‹ ํ˜ธ ์„ค๋น„์˜ ์ง€๋Šฅํ˜• ์ง„๋‹จ ๋ฐ ์˜ˆ๋ฐฉ ์œ ์ง€ ๊ด€๋ฆฌ ์ฒด๊ณ„ ๊ตฌ์ถ•์˜ ๊ธฐ์ดˆ ์ž๋ฃŒ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.

2. ์ฒ ๋„ ์‹ ํ˜ธ์šฉ ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ

2.1 ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ์˜ ๊ตฌ์กฐ์™€ ๊ธฐ๋Šฅ

์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ๋Š” ์ „๊ธฐ์ฒ ๋„์˜ ๊ถค๋„ํšŒ๋กœ์— ์„ค์น˜๋˜๋Š” ์žฅ์น˜๋กœ์„œ ๊ฒฌ์ธ ์ „๋ฅ˜์™€ ์‹ ํ˜ธ ์ „๋ฅ˜๊ฐ€ ๊ณต์œ ๋œ ๋ ˆ์ผ์—์„œ ๋‘ ์„ฑ๋ถ„์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ถ„๋ฆฌํ•œ๋‹ค[1][2]. ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ๋Š” ํฌ๊ฒŒ ๋Œ€ํ˜• ์ฒ ์‹ฌ๊ณผ ๊ถŒ์„ ์œผ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ๋Š” ๋ณ€์••๊ธฐํ˜• ๊ตฌ์กฐ๋กœ ๋‘ ๊ฐœ์˜ ๋ ˆ์ผ ๋‹จ์ž์™€ ์ค‘์•™ ๊ท€์„  ๋‹จ์ž๋ฅผ ๊ฐ–๋Š”๋‹ค[2][3].

์—ด์ฐจ ์šดํ–‰ ์‹œ ์‚ฌ์šฉ๋˜๋Š” 60 Hz์˜ ์ „๋ ฅ ์ฃผํŒŒ์ˆ˜์—์„œ๋Š” ๋‚ฎ์€ ์ž„ํ”ผ๋˜์Šค๋ฅผ ์ œ๊ณตํ•˜์—ฌ ์ˆ˜๋ฐฑ A์— ์ด๋ฅด๋Š” ๊ท€์„  ์ „๋ฅ˜๊ฐ€ ์†์‹ค ์—†์ด ํ๋ฅด๋„๋ก ํ•œ๋‹ค. ๋ฐ˜๋ฉด ๊ถค๋„ํšŒ๋กœ์—์„œ ์‚ฌ์šฉ๋˜๋Š” 1,700 Hz, 2,100 Hz ๋“ฑ ์‹ ํ˜ธ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์—์„œ๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๋†’์€ ์ž„ํ”ผ๋˜์Šค๋ฅผ ํ˜•์„ฑํ•˜์—ฌ ์‹ ํ˜ธ ์ „๋ฅ˜๊ฐ€ ์‹ ํ˜ธ ๋ฃจํ”„๋ฅผ ์ด๋ฃจ๋Š” ๋ ˆ์ผ๋กœ ํ˜๋Ÿฌ๋“ค์–ด๊ฐ€๋Š” ๊ฒƒ์„ ์ฐจ๋‹จํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์œผ๋กœ ์ „๋ ฅํšŒ๋กœ์™€ ์‹ ํ˜ธํšŒ๋กœ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ถ„๋ฆฌํ•˜์—ฌ ์•ˆ์ •์ ์ธ ๊ถค๋„ํšŒ๋กœ ๋™์ž‘์„ ๋ณด์žฅํ•  ์ˆ˜ ์žˆ๋‹ค[1][2][3].

์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ๋Š” ์ฒ ์‹ฌ, ๊ถŒ์„ , ๋‹จ์ž๋ถ€ ๊ทธ๋ฆฌ๊ณ  ์™ธํ•จ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ์ฒ ์‹ฌ์€ ์ฃผํŒŒ์ˆ˜์— ๋”ฐ๋ผ ์„ ํƒ์ ์œผ๋กœ ์ž„ํ”ผ๋˜์Šค๋ฅผ ํ˜•์„ฑํ•˜์—ฌ ์ „๋ ฅ ๋ฐ ์‹ ํ˜ธ ์ „๋ฅ˜์˜ ํ๋ฆ„์„ ์ œ์–ดํ•˜๊ณ , ๊ถŒ์„ ์€ ๋ ˆ์ผ๊ณผ ๋ณ‘๋ ฌ๋กœ ์—ฐ๊ฒฐ๋˜์–ด ์ „์ฒด ์ฃผํŒŒ์ˆ˜ ์‘๋‹ต ํŠน์„ฑ์„ ๊ฒฐ์ •ํ•œ๋‹ค. ๋‹จ์ž๋ถ€๋Š” ๋‘ ๋ ˆ์ผ๊ณผ ์ค‘์•™ ๊ท€์„  ์ผ€์ด๋ธ”์„ ์—ฐ๊ฒฐํ•˜์—ฌ ๊ฒฌ์ธ ์ „๋ฅ˜์˜ ๊ท€ํ™˜ ๊ฒฝ๋กœ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์™ธํ•จ์€ ์™ธ๋ถ€ ์ถฉ๊ฒฉ๊ณผ ์ง„๋™, ์Šต๊ธฐ, ์˜จ๋„ ๋ณ€ํ™” ๋“ฑ ํ™˜๊ฒฝ์  ์š”์ธ์œผ๋กœ๋ถ€ํ„ฐ ๋‚ด๋ถ€ ๋ถ€ํ’ˆ์„ ๋ณดํ˜ธํ•œ๋‹ค[1][2].

๊ทธ๋ฆผ 1์€ ๊ถค๋„ํšŒ๋กœ ๊ฐœ๋žต๋„๋ฅผ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์œผ๋กœ ๊ท€์„  ์ „๋ฅ˜์™€ ์‹ ํ˜ธ ์ „๋ฅ˜๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ๊ตฌ์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ๋Š” ๊ถค๋„ํšŒ๋กœ์—์„œ ๊ท€์„  ์ „๋ฅ˜๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๊ณ , ์‹ ํ˜ธ ์ฃผํŒŒ์ˆ˜์˜ ๋…๋ฆฝ์„ฑ์„ ์œ ์ง€ํ•˜๋„๋ก ํ•˜๋Š” ํ•ต์‹ฌ ์žฅ์น˜์ž„์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค[2][3].

๊ทธ๋ฆผ 1. ๊ถค๋„ํšŒ๋กœ ๊ฐœ๋žต๋„

Fig. 1. Schematic diagram of a track circuit

../../Resources/kiee/KIEE.2025.74.12.2476/fig1.png

2.2 ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ๊ณ ์žฅ์œ ํ˜•

์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ๋Š” ์™ธ๋ถ€ ํ™˜๊ฒฝ ๋ฐ ๋ถ€ํ•˜์— ๋”ฐ๋ผ ๋‹ค์–‘ํ•œ ๊ณ ์žฅ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ๊ณ ์žฅ ์ค‘ ํ•˜๋‚˜๋Š” ์ „๋ฅ˜ ๋ถˆํ‰ํ˜•์œผ๋กœ, ๊ถŒ์„  ์—ดํ™”, ์ ‘์† ๋ถˆ๋Ÿ‰ ๋ฐ ๋‹จ์ž๋ถ€ ๋ถ€์‹ ๋“ฑ์˜ ์š”์ธ์œผ๋กœ ์ธํ•ด ์–‘์ธก ๋ ˆ์ผ ์‚ฌ์ด์˜ ์ „๋ฅ˜ ๋ถ„๋ฐฐ ๋Œ€์นญ์ด ๊นจ์ง€๊ณ , ํŠน์ • ๋ ˆ์ผ์— ์ „๋ฅ˜๊ฐ€ ๊ณผ๋„ํ•˜๊ฒŒ ์ง‘์ค‘๋˜๋Š” ํ˜„์ƒ์ด ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ถˆ๊ท ํ˜•์€ ๊ถค๋„ํšŒ๋กœ์˜ ๊ฐ์ง€ ์ •ํ™•๋„๋ฅผ ์ €ํ•˜์‹œ์ผœ ์‹ ํ˜ธํšŒ๋กœ์˜ ๋น„์ •์ƒ์ ์ธ ๋™์ž‘ ๋˜๋Š” ์—ด์ฐจ ๊ฒ€์ง€ ์˜ค๋ฅ˜๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค[1][3].

๋‹ค๋ฅธ ๊ณ ์žฅ ์›์ธ์œผ๋กœ ๊ณผ์—ด์ด ์žˆ๋‹ค. ์žฅ์‹œ๊ฐ„ ๊ณ ๋ถ€ํ•˜ ์šดํ–‰์ด๋‚˜ ์—ฌ๋ฆ„์ฒ  ๊ณ ์˜จ ํ™˜๊ฒฝ์—์„œ๋Š” ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ๋‚ด๋ถ€ ์˜จ๋„๊ฐ€ ์ƒ์Šนํ•˜๋ฉด์„œ ์ ˆ์—ฐ ์žฌ๋ฃŒ ๋“ฑ์˜ ์—ดํ™”๊ฐ€ ๊ฐ€์†ํ™”๋˜์–ด ์ˆ˜๋ช…์ด ๋‹จ์ถ•๋  ์ˆ˜ ์žˆ๋‹ค. ๋ถ€ํ’ˆ์˜ ์ž„๊ณ„ ์˜จ๋„๋ฅผ ๋„˜์–ด์„œ๊ฒŒ ๋˜๋ฉด ์ ˆ์—ฐ ํŒŒ๊ดด๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๊ฒฌ์ธ ์ „๋ฅ˜๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์‹ ํ˜ธ ์ „๋ฅ˜ ์ „๋‹ฌ์—๋„ ์‹ฌ๊ฐํ•œ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค[1][7].

๋˜ํ•œ ์™ธ๋ถ€ ์ถฉ๊ฒฉ, ๊ธฐ๊ณ„์  ์ง„๋™ ๋ฐ ๋ถ€์‹ ๋“ฑ์€ ๋‹จ์„ ์˜ ์ฃผ์š” ์›์ธ์œผ๋กœ ์ž‘์šฉํ•œ๋‹ค. ๋‹จ์„ ์€ ๊ถค๋„ํšŒ๋กœ์˜ ์—ฐ์†์„ฑ์„ ๋Š์–ด ์‹ ํ˜ธ ๊ฐ์‹œ ๊ธฐ๋Šฅ์ด ์ƒ์‹ค๋˜์–ด ์—ด์ฐจ ์ œ์–ด ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์„ฑ์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ์ค€๋‹ค. ๋ฐ˜๋ฉด ๊ณผ๋„ํ•œ ์ „๋ฅ˜๋‚˜ ์ ˆ์—ฐ ํŒŒ๊ดด๋กœ ๋ฐœ์ƒํ•œ ๋‹จ๋ฝ์€ ์ „๋ฅ˜์˜ ๊ธ‰์ƒ์Šน๊ณผ ์ „์•• ๊ฐ•ํ•˜๋ฅผ ์œ ๋ฐœํ•˜๋ฉฐ, ๊ฒฝ์šฐ์— ๋”ฐ๋ผ ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ์ฝ”์ผ ๋˜๋Š” ์™ธํ•จ์ด ์†์ƒ๋  ์ˆ˜ ์žˆ๋‹ค[2][3][7].

์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ์˜ ๊ณ ์žฅ์€ ๋‹จ์ˆœํžˆ ๋‚ด๋ถ€์˜ ๋ฌธ์ œ๋ฅผ ๋„˜์–ด ์‹ ํ˜ธ ์™œ๊ณก, ์ œ์–ด ์žฅ์•  ๋ฐ ์žฅ์น˜ ์†์ƒ ๋“ฑ ์ฒ ๋„ ์‹œ์Šคํ…œ ์ „๋ฐ˜์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๊ณ ์žฅ ์œ ํ˜•๋ณ„ ์›์ธ๊ณผ ์˜ํ–ฅ ๋ฐ ๊ฒ€์ถœ ์ง€ํ‘œ๋ฅผ ๋ช…ํ™•ํžˆ ์ •์˜ํ•˜๊ณ  ํƒ์ง€ ๊ฐ€๋Šฅํ•œ ๋ชจ๋‹ˆํ„ฐ๋ง ์ฒด๊ณ„๋กœ ์—ฐ๊ฒฐํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค[1][3].

ํ‘œ 1์€ ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ์˜ ๊ณ ์žฅ ์œ ํ˜•๊ณผ ์›์ธ, ์˜ํ–ฅ ๋ฐ ๊ฒ€์ถœ ์ง€ํ‘œ๋ฅผ ์ •๋ฆฌํ•œ ๊ฒƒ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ง€ํ‘œ๋“ค์€ ์ดํ›„ 3.2์ ˆ์—์„œ ์ œ์‹œํ•˜๋Š” ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์กฐ๊ฑด(์ „์••, ์ „๋ฅ˜, ์ฃผํŒŒ์ˆ˜, ์˜จ๋„์ฐจ(ฮ”T)) ์„ค์ •์˜ ๊ทผ๊ฑฐ๋กœ ํ™œ์šฉ๋œ๋‹ค[1][3][7].

ํ‘œ 1. ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ์˜ ๊ณ ์žฅ ์œ ํ˜•๊ณผ ์˜ํ–ฅ

Table 1. Fault types, causes, impacts, and detection indicators of impedance bonds

๊ณ ์žฅ์œ ํ˜• ์ฃผ์š” ์›์ธ ์‹œ์Šคํ…œ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ ๊ฒ€์ถœ ์ง€ํ‘œ
์ „๋ฅ˜ ๋ถˆํ‰ํ˜• ๊ถŒ์„  ์—ดํ™”, ์ ‘์† ๋ถˆ๋Ÿ‰ ์‹ ํ˜ธ ์™œ๊ณก,
๋ ˆ์ผ ์ „๋ฅ˜ ์ง‘์ค‘
์ „๋ฅ˜
๋ถˆ๊ท ํ˜•(%)
๊ณผ์—ด ๊ณผ๋ถ€ํ•˜, ์ ˆ์—ฐ ์—ดํ™” ์ ˆ์—ฐ ํŒŒ๊ดด,
์ˆ˜๋ช… ๋‹จ์ถ•
์˜จ๋„(โ„ƒ)
๋‹จ์„ 
(Open Fault)
์™ธ๋ถ€ ์ถฉ๊ฒฉ, ๋ถ€์‹,
๊ธฐ๊ณ„์  ์ง„๋™
์‹ ํ˜ธํšŒ๋กœ ๋‹จ์ ˆ,
๊ฐ์‹œ ๋ถˆ๋Šฅ
์ „๋ฅ˜/์ „์•• ๋ถˆ์—ฐ์†
๋‹จ๋ฝ
(Short Fault)
์ ˆ์—ฐ ํŒŒ๊ดด, ๊ณผ๋„ ์ „๋ฅ˜ ์‹ ํ˜ธ ์™œ๊ณก, ์žฅ์น˜
๋ฐ ํšŒ๋กœ ์†์ƒ
์ „๋ฅ˜ ๊ธ‰์ƒ์Šน,
์ „์•• ๊ฐ•ํ•˜

2.3 ๊ธฐ์กด ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ๋ชจ๋‹ˆํ„ฐ๋ง์˜ ํ•œ๊ณ„์™€ ๊ฐœ์„  ๋ฐฉ์•ˆ

๊ธฐ์กด ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ์ƒํƒœ๋ฅผ ํŒ๋‹จํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์ •๊ธฐ ์ ๊ฒ€์— ๊ธฐ๋ฐ˜ํ•œ ๊ธฐ์ค€๊ฐ’ ์ธก์ • ๋ฐฉ์‹์ด๋‹ค. ์ ๊ฒ€ ์ฃผ๊ธฐ์— ๋งž์ถ”์–ด ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ๊ฐ€ ์„ค์น˜๋œ ์„ ๋กœ ๋ณ€์— ๊ทผ๋ฌด์ž๊ฐ€ ํˆฌ์ž…๋˜๊ณ  ์ „๋ฅ˜ยท์ „์••ยท์˜จ๋„ ๋“ฑ์„ ์ธก์ •ํ•˜๊ฑฐ๋‚˜ ์™ธ๊ด€ ํ™•์ธํ•˜๋Š” ํ˜•ํƒœ๋กœ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ํ˜„์žฌ ์ƒํƒœ๋ฅผ ์ •์„ฑ์ ์œผ๋กœ ํŒŒ์•…ํ•˜๋Š” ๋ฐ์—๋Š” ํšจ๊ณผ์ ์ด์ง€๋งŒ, ์šด์šฉ ์ค‘ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์žฅ์• ๋ฅผ ์˜ˆ์ธกํ•˜์—ฌ ์กฐ์น˜ํ•˜๊ฑฐ๋‚˜ ์ ๊ฒ€ ์ฃผ๊ธฐ ์‚ฌ์ด์— ์ง„ํ–‰๋˜๋Š” ๊ธ‰์†ํ•œ ์—ดํ™” ๋“ฑ์„ ํŒŒ์•…ํ•˜๋Š” ๋ฐ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ํŠนํžˆ ๊ณ ์†์ฒ ๋„์™€ ๊ฐ™์€ ๊ณ ๋ถ€ํ•˜ ์šดํ–‰์ด ๋นˆ๋ฒˆํ•œ ํ™˜๊ฒฝ์—์„œ๋Š” ๋‹จ๊ธฐ๊ฐ„ ๋‚ด ๊ธ‰๊ฒฉํ•œ ์„ฑ๋Šฅ ์ €ํ•˜๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๊ณ , ์ด๋Š” ์—ด์ฐจ ์šดํ–‰ ์ฐจ์งˆ๊ณผ ์•ˆ์ „์‚ฌ๊ณ ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค[1][3][7].

๊ธฐ์ค€๊ฐ’ ๊ธฐ๋ฐ˜์˜ ์ ๊ฒ€ ๋ฐฉ์‹์€ ์ „๋ฅ˜ยท์ „์••ยท์˜จ๋„ ๋“ฑ์ด ์ผ์ •ํ•œ ์ž„๊ณ„์น˜๋ฅผ ๋ฒ—์–ด๋‚  ๋•Œ๋งŒ ์ด์ƒ์œผ๋กœ ๊ตฌ๋ถ„ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํŒ๋‹จ์ด ๋ช…ํ™•ํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ๋ฒ”์œ„ ๋‚ด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฏธ์„ธํ•œ ๋ณ€ํ™”๋ฅผ ๊ฐ์ง€ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋ฐ์ดํ„ฐ์˜ ์—ฐ์†์  ์ถ”์„ธ๋‚˜ ๋ณตํ•ฉ์  ํŒจํ„ด์„ ์ธ์‹ํ•˜์ง€ ๋ชปํ•ด ์ž ์žฌ์  ์—ดํ™”๋ฅผ ์กฐ๊ธฐ์— ํƒ์ง€ํ•  ์ˆ˜ ์—†๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์ „๋ฅ˜ ๋ถˆํ‰ํ˜•์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์˜จ๋„ ์ƒ์Šน์ด ์„œ์„œํžˆ ๋‚˜ํƒ€๋‚˜๋Š” ์ƒํ™ฉ์ด๋ผ๋„, ๊ฐœ๋ณ„ ์ง€ํ‘œ๊ฐ€ ๋ฒ”์œ„์— ๋จธ๋ฌด๋Š” ํ•œ ์ด์ƒ์œผ๋กœ ์ธ์‹๋˜์ง€ ์•Š๋Š”๋‹ค[1].

๋”ฐ๋ผ์„œ ๊ธฐ์กด ๋ฐฉ์‹์€ ๋‹จ์ˆœํ•˜๊ณ  ์‹ค์šฉ์ ์ธ ์žฅ์ ์„ ๊ฐ€์ง€์ง€๋งŒ, ๊ณ ์†ํ™”๋œ ํ˜„๋Œ€ ์ฒ ๋„ ์‹œ์Šคํ…œ์—์„œ ์š”๊ตฌ๋˜๋Š” ์‹ค์‹œ๊ฐ„ ๊ฐ์‹œ์™€ ์˜ˆ์ธก ์ •๋น„ ๊ธฐ๋Šฅ์„ ์ถฉ์กฑํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ •๊ธฐ ์ ๊ฒ€์—์„œ ์ •์ƒ ํŒ์ •์„ ๋ฐ›๋”๋ผ๋„ ์—ดํ™”๊ฐ€ ๋ˆ„์ ๋˜์–ด ์˜ˆ๊ธฐ์น˜ ๋ชปํ•œ ์žฅ์• ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๊ณ , ์ด ๊ฒฝ์šฐ ์‚ฌ์ „ ์˜ˆ๋ฐฉ๋ณด๋‹ค๋Š” ์‚ฌํ›„ ๋Œ€์‘์— ๊ทธ์น  ์ˆ˜ ์žˆ๋‹ค[1][7].

์ด๋Ÿฌํ•œ ์ด์œ ๋กœ ์ฒ ๋„ ์‹œ์Šคํ…œ์—์„œ ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ์™€ ๊ฐ™์ด ์—ด์ฐจ ์šดํ–‰์˜ ์•ˆ์ •์„ฑ๊ณผ ์ง์ ‘ ์—ฐ๊ด€๋œ ํ•ต์‹ฌ ์žฅ์น˜์—๋Š” ๋‹จ์ˆœํ•œ ์ธก์ •๊ฐ’ ๋น„๊ต ๋ฐฉ์‹ ๋Œ€์‹ , ๋‹ค์–‘ํ•œ ์„ผ์‹ฑ ๋ฐ์ดํ„ฐ๋ฅผ ์ข…ํ•ฉ์ ์œผ๋กœ ๋ถ„์„ํ•˜์—ฌ ๋ณตํ•ฉ ํŒจํ„ด์„ ์ธ์‹ํ•˜๊ณ  ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š” ์ง€๋Šฅํ˜• ๋ชจ๋‹ˆํ„ฐ๋ง ์ฒด๊ณ„์˜ ๊ตฌ์ถ•์ด ํ•„์š”ํ•˜๋‹ค[4][5].

3. AI ๊ธฐ๋ฐ˜ ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ๋ชจ๋‹ˆํ„ฐ๋ง

3.1 AI ๊ธฐ๋ฐ˜ ๋ชจ๋‹ˆํ„ฐ๋ง

์ตœ๊ทผ ์„ค๋น„ ๋ถ„์•ผ์—์„œ AI๋ฅผ ํ™œ์šฉํ•œ ๋ชจ๋‹ˆํ„ฐ๋ง ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด์˜ ์ฃผ๊ธฐ์  ์ ๊ฒ€์ด๋‚˜ ์ •์ƒ ๋ฒ”์œ„ ๊ธฐ๋ฐ˜ ๋ฐฉ์‹์œผ๋กœ๋Š” ์ˆœ๊ฐ„์ ์œผ๋กœ ๋ฐœ์ƒํ•˜๋Š” ์ด์ƒ ์‹ ํ˜ธ๋‚˜ ๋น„์„ ํ˜•์ ์ด๊ณ  ๋ณตํ•ฉ์ ์ธ ํŒจํ„ด์˜ ํƒ์ง€๊ฐ€ ์ œํ•œ์ ์ด๊ธฐ ๋•Œ๋ฌธ์—, ๋‹ค์–‘ํ•œ ์„ผ์‹ฑ ๋ฐ์ดํ„ฐ์™€ AI ํ•™์Šต ๊ธฐ๋ฒ•์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์กฐ๊ธฐ ๊ณ ์žฅ ํƒ์ง€์™€ ์˜ˆ์ธก ์ •๋น„๋กœ ํ™•์žฅํ•˜๋ ค๋Š” ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค[4][5].

์ „๋ ฅ ์„ค๋น„ ๋ถ„์•ผ ์ค‘ ๋ณ€์••๊ธฐ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ ์—ฐ๊ตฌ์—์„œ๋Š” ์šด์šฉ ์ค‘ ๋ฐœ์ƒํ•˜๋Š” ๋ถ€๋ถ„ ๋ฐฉ์ „ ์‹ ํ˜ธ ๊ฒ€์ถœ, ์šฉ์กด๊ฐ€์Šค ๋ถ„์„, ๊ถŒ์„  ์˜จ๋„ ๋ฐ ์ง„๋™ ๋ฐ์ดํ„ฐ ๋“ฑ์„ ํ™œ์šฉํ•˜์—ฌ ๋ณ€์••๊ธฐ์˜ ์ ˆ์—ฐ ์—ดํ™” ์ƒํƒœ๋ฅผ ํŒŒ์•…ํ•˜๊ฑฐ๋‚˜ ๊ณ ์žฅ ๋ฐœ์ƒ ๊ฐ€๋Šฅ์„ฑ์„ ์˜ˆ์ธกํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์ œ์‹œ๋˜์—ˆ๋‹ค. CNN(Convolutional Neural Network)๊ณผ LSTM(Long Short-Term Memory) ๊ฐ™์€ ํ•™์Šต ๊ธฐ๋ฒ•์€ ๋น„์„ ํ˜•์ ์ด๊ณ  ์‹œ๊ณ„์—ด์ ์ธ ํŠน์„ฑ์„ ๊ฐ€์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ์–ด์„œ ๊ธฐ์กด์˜ ๊ธฐ์ค€๊ฐ’ ๊ธฐ๋ฐ˜ ๋ฐฉ์‹๋ณด๋‹ค ๋†’์€ ์ •ํ™•๋„๋กœ ๊ณ ์žฅ ๊ฒ€์ถœ์ด ๊ฐ€๋Šฅํ•จ์„ ๋ณด์˜€๋‹ค. ๋‹จ์ˆœํ•œ ์ด์ƒ ํƒ์ง€๋ฅผ ๋„˜์–ด ์—ดํ™” ์ง„ํ–‰๋ฅ  ๋ถ„์„๊ณผ ์ž”์—ฌ ์ˆ˜๋ช… ์˜ˆ์ธก์œผ๋กœ ํ™•์žฅ๋˜์–ด ๊ณ ์žฅ ์˜ˆ๋ฐฉ ์ •๋น„์˜ ๊ธฐ๋ฐ˜์ด ๋˜๊ณ  ์žˆ๋‹ค[4][5].

์ฐจ๋‹จ๊ธฐ์™€ ์†ก์ „์„  ๋ถ„์•ผ์—์„œ๋„ AI ๊ธฐ๋ฐ˜ ๋ชจ๋‹ˆํ„ฐ๋ง ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ์ฐจ๋‹จ๊ธฐ์˜ ๊ฒฝ์šฐ ๊ฐœํ ์‹œ ๋ฐœ์ƒํ•˜๋Š” ํŒŒํ˜•๊ณผ ๊ธฐ๊ณ„์  ์ง„๋™ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์ ‘์  ์—ดํ™” ๋ฐ ์ด์ƒ ๋™์ž‘์„ ์กฐ๊ธฐ์— ๊ฒ€์ถœํ•˜์˜€๊ณ , ์†ก์ „์„ ์—์„œ๋Š” ์ „๋ฅ˜ ๊ณผ๋ถ€ํ•˜, ์˜จ๋„ ์ƒ์Šน, ์„ ๋กœ ์ฒ˜์ง ๋“ฑ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ธฐํ›„ ์กฐ๊ฑด ๋ฐ ๋ถ€ํ•˜ ์ƒํƒœ์— ๋”ฐ๋ฅธ ์žฅ์• ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค์€ AI๋ฅผ ์ ์šฉํ•œ ์ „๋ ฅ ์„ค๋น„์—์„œ ๋‹จ์ˆœ ๊ฒฝ๋ณด ๋ฐฉ์‹๋ณด๋‹ค ๋ณตํ•ฉ์ ์ธ ์ด์ƒ ํŒจํ„ด์„ ํ•™์Šตํ•˜์—ฌ ๋†’์€ ์ •ํ™•๋„์™€ ์‹ ๋ขฐ๋„๋ฅผ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค[4][5].

์ฒ ๋„ ๋ถ„์•ผ์—์„œ๋„ AI ์ ์šฉ์ด ์ ์ฐจ ํ™•๋Œ€๋˜๊ณ  ์žˆ๋‹ค. ๊ถค๋„ํšŒ๋กœ ์‹ ํ˜ธ๋ฅผ ์‹œ๊ฐ„-์ฃผํŒŒ์ˆ˜ ์ด๋ฏธ์ง€๋กœ ๋ณ€ํ™˜ํ•ด CNN์œผ๋กœ ๊ณ ์žฅ์„ ๋ถ„๋ฅ˜ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ๋„๋Š” ์ฒ ๋„ ์„ค๋น„์—์„œ๋„ AI๋ฅผ ํ™œ์šฉํ•œ ์‹ค์‹œ๊ฐ„ ๋ชจ๋‹ˆํ„ฐ๋ง๊ณผ ์˜ˆ์ธก ์ •๋น„ ์ฒด๊ณ„ ๊ตฌ์ถ•์ด ๊ฐ€๋Šฅํ•จ์„ ์ž…์ฆํ•œ ์‚ฌ๋ก€๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค[6][8].

์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ๋ชจ๋‹ˆํ„ฐ๋ง์—๋„ ๋น„์„ ํ˜• ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ๊ฐ•์ ์„ ๊ฐ€์ง€๋Š” CNN๊ณผ LSTM์ด ์ ํ•ฉํ•˜๋‹ค๋Š” ๊ทผ๊ฑฐ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. CNN์€ ์‹œ๊ณ„์—ด ์‹ ํ˜ธ์—์„œ ๊ตญ์†Œ์ ์ธ ํŠน์ง•์„ ์ถ”์ถœํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์ด๊ณ , LSTM์€ ์‹œ๊ฐ„์  ์˜์กด์„ฑ์„ ๋ฐ˜์˜ํ•˜์—ฌ ์žฅ๊ธฐ์  ๋ณ€ํ™” ํ•™์Šต์— ์œ ๋ฆฌํ•˜๋‹ค. MLP(Multilayer Perceptron)๋Š” ๋‹จ์ˆœํ•œ ๊ตฌ์กฐ์˜ ๊ธฐ์ค€ ์„ฑ๋Šฅ ๊ธฐ๋ฒ•์œผ๋กœ, CNN๊ณผ LSTM์˜ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•œ ๋Œ€์กฐ๊ตฐ ์—ญํ• ๋กœ ํ™œ์šฉํ–ˆ๋‹ค[6][8-12].

ํ‘œ 2๋Š” ์ „๋ ฅ ๋ฐ ์ฒ ๋„ ๋ถ„์•ผ์—์„œ ์ˆ˜ํ–‰๋œ AI ๋ชจ๋‹ˆํ„ฐ๋ง ์—ฐ๊ตฌ ๋™ํ–ฅ์œผ๋กœ, ์ ์šฉ ๋ถ„์•ผ๋ณ„ ์ฃผ์š” ์„ผ์‹ฑ ๋ฐ์ดํ„ฐ์™€ ์ ์šฉ๋œ ํ•™์Šต ๊ธฐ๋ฒ•, ์„ฑ๊ณผ ๋ฐ ํŠน์ง•์„ ๋น„๊ตํ•œ ํ‘œ์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ณธ ์—ฐ๊ตฌ ๋Œ€์ƒ์ธ ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ์—๋„ AI ๊ธฐ๋ฐ˜ ๋ชจ๋‹ˆํ„ฐ๋ง ์ ‘๊ทผ์ด ๊ธฐ์ˆ ์ ์œผ๋กœ ์ถฉ๋ถ„ํžˆ ๊ฐ€๋Šฅํ•˜๋‹ค[4][5][6][8].

ํ‘œ 2. AI ๊ธฐ๋ฐ˜ ๋ชจ๋‹ˆํ„ฐ๋ง ์—ฐ๊ตฌ ๋™ํ–ฅ ์š”์•ฝ

Table 2. Summary of AI-based monitoring research trends in power and railway systems

์ ์šฉ๋ถ„์•ผ ์ฃผ์š” ์„ผ์‹ฑ ๋ฐ์ดํ„ฐ ํ•™์Šต ๊ธฐ๋ฒ• ํŠน์ง• ๋ฐ ์„ฑ๊ณผ
๋ณ€์••๊ธฐ ๋ถ€๋ถ„ ๋ฐฉ์ „, DGA, ์˜จ๋„, ์ง„๋™ CNN, LSTM ์ ˆ์—ฐ ์—ดํ™” ๊ฒ€์ถœ,
๊ณ ์žฅ ์˜ˆ์ธก, ์ˆ˜๋ช… ์ถ”์ •
์ฐจ๋‹จ๊ธฐ ์ „๋ฅ˜ ํŒŒํ˜•, ์ง„๋™ ๋ฐ์ดํ„ฐ ๋จธ์‹ ๋Ÿฌ๋‹, CNN ๊ฐœํ ๋™์ž‘ ์ด์ƒ
ํƒ์ง€, ๊ธฐ๊ณ„์  ์—ดํ™” ๊ฒ€์ถœ
์†ก์ „์„  ์ „๋ฅ˜, ์˜จ๋„, ์„ ๋กœ ์ฒ˜์ง ๋”ฅ๋Ÿฌ๋‹, ํšŒ๊ท€๋ถ„์„ ๊ณผ๋ถ€ํ•˜ ๋ฐ ๊ธฐํ›„
๋ณ€ํ™” ๋”ฐ๋ฅธ ์‚ฌ๊ณ  ์˜ˆ์ธก
๊ถค๋„ํšŒ๋กœ ์ž„ํ”ผ๋˜์Šค ๋ณ€ํ™”, ์ „๋ฅ˜ ํŒŒํ˜• ๋จธ์‹ ๋Ÿฌ๋‹,
CNN,
LSTM
๋‹จ์„ ยท๋‹จ๋ฝ ์กฐ๊ธฐ
๊ฒ€์ถœ, ์ด์ƒ ํŒจํ„ด ํ•™์Šต

3.2 ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ๋ชจ๋‹ˆํ„ฐ๋ง Parameters ์„ ์ •

์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ์˜ ์ƒํƒœ๋ฅผ ์ •๋ฐ€ํ•˜๊ฒŒ ๊ฐ์‹œํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ฃผ์š” ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ช…ํ™•ํžˆ ์ •์˜ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์•ž์„  ์—ฐ๊ตฌ์—์„œ ์ œ์‹œ๋œ ์ฃผ์š” ์ด์ƒ ์ง•ํ›„๊ฐ€ ์ „์•• ๊ฐ•ํ•˜, ์ „๋ฅ˜ ๋ถˆํ‰ํ˜•, ์‹ ํ˜ธ ๊ฐ์‡ , ์˜จ๋„ ์ƒ์Šน ๋“ฑ์œผ๋กœ ๋‚˜ํƒ€๋‚˜๋Š” ๋งŒํผ, ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ์˜ ์ „๊ธฐ์ ยท์—ด์  ํŠน์„ฑ์„ ๋Œ€ํ‘œํ•˜๋Š” ๋ณ€์ˆ˜๋กœ์„œ ์ „์••ยท์ „๋ฅ˜ยท์ฃผํŒŒ์ˆ˜ยท์˜จ๋„๋ฅผ ํ•ต์‹ฌ ์ง€ํ‘œ๋กœ ์„ ์ •ํ–ˆ๋‹ค[1][3][7][8]. ์ •์ƒ ์ƒํƒœ์™€ ๋น„์ •์ƒ ์ƒํƒœ๋ฅผ ๊ตฌ๋ถ„ํ•˜์—ฌ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ฐ๊ฐ์˜ ์กฐ๊ฑด์„ ์„ค์ •ํ•˜๊ณ , ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์‹ค์ œ ์šด์šฉ ํ™˜๊ฒฝ์˜ ๋ณ€ํ™”๋ฅผ ์žฌํ˜„ํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ตฌ์„ฑํ–ˆ๋‹ค.

์ „์••์˜ ๊ฒฝ์šฐ ๊ถค๋„ํšŒ๋กœ ์‹ ํ˜ธ ์ถœ๋ ฅ์€ AC 20 V์ด์ง€๋งŒ, ์„ ๋กœ ๊ฑฐ๋ฆฌยท์ €ํ•ญยท๊ฒฐ์„  ์†์‹ค ๋“ฑ์˜ ์˜ํ–ฅ์œผ๋กœ ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ์— ๊ฑธ๋ฆฌ๋Š” ์ „์••์€ AC 4~6 V ์ˆ˜์ค€์ด ๋œ๋‹ค. ์ •์ƒ ์ƒํƒœ์—์„œ๋Š” ํŒŒํ˜•์ด ์•ˆ์ •์ ์œผ๋กœ ์œ ์ง€๋˜๋ฉฐ, ๋น„์ •์ƒ ์ƒํƒœ์—์„œ๋Š” ์ˆœ๊ฐ„์ ์ธ ์ „์•• ํ•˜๊ฐ•์ด๋‚˜ ์ƒ์Šน์ด ๋ฐœ์ƒํ•˜๋„๋ก ํ•˜์—ฌ ์ ‘์† ๋ถˆ๋Ÿ‰์ด๋‚˜ ๋‹จ๋ฝ ๋“ฑ ์ „์•• ๋ณ€๋™ ์ด์ƒ ์ƒํƒœ๋ฅผ ๋ชจ์‚ฌํ–ˆ๋‹ค[1][3].

์ „๋ฅ˜๋Š” ์‹ค์ œ ์šดํ–‰์—์„œ ์ˆ˜๋ฐฑ A ๋‹จ์œ„๋กœ ํ๋ฅด๋ฉฐ, ๊ณ ์†์ฒ ๋„ ๊ตฌ๊ฐ„์—์„œ๋Š” 400~800 A ์ˆ˜์ค€์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋Œ€ํ‘œ๊ฐ’์œผ๋กœ 500 A๋ฅผ ์ •ํ–ˆ๋‹ค. ์ •์ƒ ์ƒํƒœ์—์„œ๋Š” ์•ˆ์ •์ ์ธ ์ „๋ฅ˜ ํ๋ฆ„์ด ์œ ์ง€๋˜๋„๋ก ํ•˜์˜€๊ณ , ๋น„์ •์ƒ ์ƒํƒœ์—์„œ๋Š” ๊ธ‰๊ฒฉํ•œ ๋ณ€๋™์„ ๋ชจ์‚ฌํ•˜์—ฌ ๋‹จ์„ ยท์ ‘์† ๋ถˆ๋Ÿ‰ยท์ ˆ์—ฐ ์—ดํ™” ๋“ฑ์˜ ์ด์ƒ ์ƒํƒœ๋ฅผ ์žฌํ˜„ํ–ˆ๋‹ค[3][7].

์ฃผํŒŒ์ˆ˜๋Š” ๊ถค๋„ํšŒ๋กœ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ๋‹ค์–‘ํ•œ ์ฃผํŒŒ์ˆ˜ ์ค‘ ๊ตญ๋‚ด ์ฒ ๋„ ๊ถค๋„ํšŒ๋กœ์˜ ํ‘œ์ค€ ์ฃผํŒŒ์ˆ˜ ์ค‘ ํ•˜๋‚˜์ด๋ฉฐ ์‹ ํ˜ธ ๊ตฌ๊ฐ„ ๋ถ„๋ฆฌ์™€ ๊ถค๋„ ์ ์œ  ๊ฒ€์ง€์— ์‚ฌ์šฉ๋˜๋Š” 1,700 Hz๋ฅผ ์ค‘์‹ฌ ์ฃผํŒŒ์ˆ˜๋กœ ์„ ํƒํ–ˆ๋‹ค[2][3]. ์ •์ƒ ์ƒํƒœ์—์„œ๋Š” FFT ๋ถ„์„์—์„œ 1,700 Hz ์„ฑ๋ถ„์˜ ์ง„ํญ์ด ์•ˆ์ •์ ์œผ๋กœ ์œ ์ง€๋˜์—ˆ๊ณ , ๋น„์ •์ƒ ์ƒํƒœ์—์„œ๋Š” ๊ณผ๋„ํ•˜๊ฒŒ ๊ฐ์†Œํ•˜๊ฑฐ๋‚˜ ์ฆํญ๋˜์–ด ์‹ ํ˜ธ ๊ฐ์‡  ๋˜๋Š” ์™ธ๋ž€ ๊ฐ„์„ญ์„ ๋ชจ์‚ฌํ–ˆ๋‹ค.

์˜จ๋„๋Š” ์ ˆ๋Œ€๊ฐ’ ๋Œ€์‹  ๋‚ด๋ถ€์™€ ์™ธ๋ถ€์˜ ์˜จ๋„์ฐจ(ฮ”T)๋ฅผ ์ง€ํ‘œ๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋„๋ก ํ–ˆ๋‹ค. ์ผ๋ฐ˜์ ์ธ ํ™˜๊ฒฝ์—์„œ ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ๋Š” ๊ถŒ์„  ๋ฐœ์—ด๋กœ ๋‚ด๋ถ€ ์˜จ๋„๊ฐ€ ์™ธ๋ถ€๋ณด๋‹ค ๋†’์•„ ฮ”T๊ฐ€ ์•ฝ 5 โ„ƒ ์ˆ˜์ค€์—์„œ ์œ ์ง€๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋น„์ •์ƒ ์ƒํƒœ์—์„œ๋Š” ฮ”T๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ƒ์Šนํ•˜๋„๋ก ํ•˜์—ฌ ์ ˆ์—ฐ ์—ดํ™”, ๊ณผ๋ถ€ํ•˜, ๋ƒ‰๊ฐ ๋ถˆ๋Ÿ‰ ๋“ฑ ์˜จ๋„ ๊ด€๋ จ ์ด์ƒ์ด ๋ฐ˜์˜๋˜๋„๋ก ํ–ˆ๋‹ค[7].

๋„ค ์ข…๋ฅ˜์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ •์˜ํ•˜๊ณ  ์‹ค์ œ ์šด์šฉ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ถˆํ™•์‹ค์„ฑ์„ ๋ฐ˜์˜ํ•˜์—ฌ, ์ธ๊ณต์ง€๋Šฅ ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ๋ฅผ ํ˜„์‹ค์„ฑ ์žˆ๊ฒŒ ๊ตฌ์„ฑํ–ˆ๋‹ค. ๊ฐ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ธก์ • ์œ„์น˜์™€ ์ •์ƒยท๋น„์ •์ƒ ์กฐ๊ฑด์€ ํ‘œ 3๊ณผ ๊ทธ๋ฆผ 2์— ์ •๋ฆฌํ–ˆ๋‹ค.

ํ‘œ 3. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์„ผ์‹ฑ ํŒŒ๋ผ๋ฏธํ„ฐ ์กฐ๊ฑด

Table 3. Simulation sensing parameter conditions for impedance bond monitoring

ํŒŒ๋ผ๋ฏธํ„ฐ ์ •์ƒ์กฐ๊ฑด ๋น„์ •์ƒ์กฐ๊ฑด
์ „์•• 4.24 V ์ˆœ๊ฐ„ ์ „์•• ๊ฐ•ํ•˜ยท์ƒ์Šน
์ „๋ฅ˜ 500 A ์ „๋ฅ˜ ๊ฐ•ํ•˜ยท์ƒ์Šน
์ฃผํŒŒ์ˆ˜ 1,700 Hz ์™ธ๋ž€ ๋ฐ ์‹ ํ˜ธ ์ฐจ๋‹จ
์˜จ๋„ ๋‚ด๋ถ€-์™ธ๋ถ€ ์˜จ๋„ ํŽธ์ฐจ 5 โ„ƒ ฮ”T ๊ธ‰์ƒ์Šน

๊ทธ๋ฆผ 2. ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ธก์ •์œ„์น˜(์žฌ๊ตฌ์„ฑ:[2])

Fig. 2. Measurement Locations of Impedance Bond Parameters(Adapted from[2])

../../Resources/kiee/KIEE.2025.74.12.2476/fig2.png

3.3 ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ํ•™์Šต ๋ชจ๋ธ

์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ์˜ ์‹œ๊ณ„์—ด ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ํŠน์„ฑ๊ณผ ๋‹ค์–‘ํ•œ ํ•™์Šต ๊ตฌ์กฐ ๊ฐ„ ์ฐจ์ด๋ฅผ ๋น„๊ตํ•˜๋ฉฐ ์ •์ƒ ๋ฐ ๋น„์ •์ƒ ์ƒํƒœ๋ฅผ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด ๋„ค ์ข…๋ฅ˜์˜ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์„ ์„ ์ •ํ–ˆ๋‹ค. ์„ ์ •๋œ ๋ชจ๋ธ์€ CNN, LSTM, MLP, ๊ทธ๋ฆฌ๊ณ  CNN๊ณผ LSTM์„ ๊ฒฐํ•ฉํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๊ตฌ์กฐ(CNN-LSTM)์ด๋‹ค. ๊ฐ ๋ชจ๋ธ์€ ๋™์ผํ•œ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šตํ•˜์˜€์œผ๋ฉฐ, ๊ตฌ์กฐ์  ํŠน์„ฑยท์—ฐ์‚ฐ ํšจ์œจยท์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋น„๊ตํ–ˆ๋‹ค.

CNN์€ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์—์„œ ๊ตญ์†Œ์  ํŠน์ง•์„ ๊ตฌ๋ถ„ํ•˜์—ฌ ํ•™์Šตํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์ด๋‹ค[9]. ์ „์••ยท์ „๋ฅ˜ยท์ฃผํŒŒ์ˆ˜ยท์˜จ๋„์™€ ๊ฐ™์€ ์‹ ํ˜ธ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋‹จ๊ธฐ์  ์ด์ƒ ํŒจํ„ด ๊ฐ์ง€์— ์ ํ•ฉํ•˜๋ฉฐ, ํ•ฉ์„ฑ๊ณฑ๊ณผ ํ’€๋ง ์—ฐ์‚ฐ์„ ํ†ตํ•ด ์ฃผ์š” ์ •๋ณด๋ฅผ ๋ณด์ „ํ•˜๋ฉด์„œ ๋ถˆํ•„์š”ํ•œ ์žก์Œ์„ ์ œ๊ฑฐํ•˜๊ณ  ๊ณ„์‚ฐ ํšจ์œจ์„ ๋†’์ธ๋‹ค. ๋ฐ˜๋ฉด LSTM์€ ๊ฒŒ์ดํŠธ ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹œ๊ฐ„ ์ถ•์˜ ์žฅ๊ธฐ ์˜์กด์„ฑ์„ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ์–ด ์ „๋ฅ˜ ๋ถˆํ‰ํ˜•์ด๋‚˜ ์ง€์†์ ์ธ ๋น„์ •์ƒ์  ์˜จ๋„ ์ƒ์Šน์ฒ˜๋Ÿผ ์ ์ง„์  ์ด์ƒ ์ƒํƒœ๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐ ๊ฐ•์ ์„ ๊ฐ–๋Š”๋‹ค[10]. MLP๋Š” ๊ธฐ๋ณธ์ ์ธ ๋‹ค์ธต ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋กœ ํ•™์Šต ์†๋„๊ฐ€ ๋น ๋ฅด๊ณ  ๊ตฌํ˜„์ด ๋‹จ์ˆœํ•˜์ง€๋งŒ, ๋ณต์žกํ•œ ์‹œ๊ณ„์—ด ํŒจํ„ด์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ์ฃผ๋กœ ์„ฑ๋Šฅ ๋น„๊ต๋ฅผ ์œ„ํ•œ ๊ธฐ์ค€์„ (baseline) ๋ชจ๋ธ๋กœ ํ™œ์šฉ๋œ๋‹ค[11]. CNN๊ณผ LSTM์„ ๊ฒฐํ•ฉํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ชจ๋ธ์€ CNN์œผ๋กœ ๋‹จ๊ธฐ์ ์ธ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ , LSTM์œผ๋กœ ์žฅ๊ธฐ์  ๋ณ€ํ™”๋ฅผ ํ•™์Šตํ•˜๋ฉฐ, ๋ณตํ•ฉ์ ์ธ ์ด์ƒ ํŒจํ„ด์„ ๋™์‹œ์— ํƒ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ์žฅ์ ์ด ์žˆ๋‹ค[12]. ์ด ์กฐํ•ฉ์€ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ์ง€์—ญ์„ฑ๊ณผ ์‹œ๊ฐ„์  ์—ฐ์†์„ฑ์„ ๋ชจ๋‘ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ์–ด, ์ฒ ๋„ ์‹ ํ˜ธ ๋ฐ ์ „๋ ฅ ์‹œ์Šคํ…œ๊ณผ ๊ฐ™์ด ์—ฐ์†์  ์ด์ƒ์„ ๋‹ค๋ฃจ๋Š” ํ™˜๊ฒฝ์— ์ ํ•ฉํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ํ‘œ 4๋Š” ๊ฐ ๋ชจ๋ธ์˜ ๊ตฌ์กฐ์  ํŠน์„ฑ๊ณผ ์žฅ๋‹จ์ ์„ ์š”์•ฝํ•œ ๊ฒƒ์ด๋‹ค.

ํ‘œ 4. ์ ์šฉ๋œ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์˜ ํŠน์ง•

Table 4. Characteristics of applied AI models

๋ชจ๋ธ ํŠน์ง• ์žฅ์  ํ•œ๊ณ„
CNN 1D-ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ, ์ง€์—ญ์  ํŠน์ง• ์ถ”์ถœ ์ด์ƒ ์‹ ํ˜ธ ๊ฒ€์ถœ, ์—ฐ์‚ฐ ํšจ์œจ ๋†’์Œ ์žฅ๊ธฐ์  ์‹œ๊ฐ„ ์˜์กด์„ฑ ๋ฐ˜์˜ ์ œํ•œ
LSTM ๊ฒŒ์ดํŠธ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•œ ์žฅ๊ธฐ ์˜์กด์„ฑ ํ•™์Šต ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ์žฅ๊ธฐ ํŒจํ„ด ๋ฐ˜์˜ ๊ฐ€๋Šฅ ์—ฐ์‚ฐ๋Ÿ‰ ๊ณผ๋‹ค, ํ•™์Šต ์†๋„ ์ €ํ•˜
MLP ๊ธฐ๋ณธ์ ์ธ ๋‹ค์ธต ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ ๊ตฌํ˜„์ด ๋‹จ์ˆœ, ๊ธฐ์ค€ ์„ฑ๋Šฅ ํ™•์ธ ์šฉ์ด ๋ณต์žกํ•œ ์‹œ๊ณ„์—ด ํŒจํ„ด ํ•™์Šต ํ•œ๊ณ„
CNN-LSTM CNN ํŠน์ง• ์ถ”์ถœ๊ณผ LSTM ์‹œ๊ณ„์—ด ํ•™์Šต ๊ฒฐํ•ฉ ๋‹จ๊ธฐ ํŒจํ„ด๊ณผ ์žฅ๊ธฐ ์˜์กด์„ฑ์„ ๋™์‹œ์— ํ•™์Šต ๊ฐ€๋Šฅ ๋ณต์žกํ•œ ๊ตฌ์กฐ, ํ•™์Šต ์‹œ๊ฐ„ ์ฆ๊ฐ€

3.4 ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ ๋ฐ ํ•™์Šต ํ™˜๊ฒฝ

์ธ๊ณต์ง€๋Šฅ ํ•™์Šต์„ ํ†ตํ•œ ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐ์ดํ„ฐ ์ƒ์„ฑ์—๋Š” MATLAB Simulink ๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ด ํ™œ์šฉ๋˜์—ˆ๋‹ค[14]. ์ •์ƒ ๋ฐ์ดํ„ฐ 200์„ธํŠธ์™€ ๋น„์ •์ƒ ๋ฐ์ดํ„ฐ 200์„ธํŠธ๋กœ ์ด 400์„ธํŠธ์ด๋ฉฐ, ๊ฐ ์„ธํŠธ๋Š” ์ „์••ยท์ „๋ฅ˜ยท์ฃผํŒŒ์ˆ˜ยท์˜จ๋„์˜ ๋„ค ๊ฐ€์ง€ ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ๋ฐ์ดํ„ฐ๋Š” ์‹ค์ œ ์šด์šฉ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋…ธ์ด์ฆˆ์™€ ์ƒํƒœ ๋ณ€๋™์„ ๋ชจ์‚ฌํ•˜์—ฌ ํ˜„์žฅ ๋ฐ์ดํ„ฐ์™€ ์œ ์‚ฌํ•œ ํŠน์„ฑ์„ ๊ฐ–๋„๋ก ์„ค๊ณ„ํ–ˆ๋‹ค.

์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„์—์„œ๋Š” ๋ชจ๋“  ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ Min-Max ์ •๊ทœํ™”(0~1)๋กœ ์Šค์ผ€์ผ๋งํ•˜์—ฌ, ์ˆ˜๋ฐฑ A์˜ ์ „๋ฅ˜, ์ˆ˜ V์˜ ์ „์••, ์ˆ˜์‹ญ โ„ƒ์˜ ์˜จ๋„์™€ ์ˆ˜์ฒœ Hz์˜ ์ฃผํŒŒ์ˆ˜์™€ ๊ฐ™์ด ๋‹จ์œ„ ์ฐจ์ด์— ์˜ํ•œ ํ•™์Šต ๋ถˆ๊ท ํ˜•์„ ๋ฐฉ์ง€ํ–ˆ๋‹ค. ๋ฐ์ดํ„ฐ๋Š” ์‹œ๊ณ„์—ด ๊ตฌ์กฐ๊ฐ€ ์œ ์ง€๋  ์ˆ˜ ์žˆ๋„๋ก ๊ท ์ผํ•œ ์ƒ˜ํ”Œ๋ง ๊ฐ„๊ฒฉ๊ณผ ์ˆœ์ฐจ์  ๋ฐฐ์น˜ ๋ฐฉ์‹์„ ์ ์šฉํ–ˆ๋‹ค.

๋ฐ์ดํ„ฐ๋Š” ํ•™์Šตยท๊ฒ€์ฆยทํ…Œ์ŠคํŠธ์˜ ์„ธ ๊ตฌ๊ฐ„์œผ๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋จผ์ € ๋ฐ์ดํ„ฐ์˜ 70%๋Š” ํ•™์Šต์šฉ์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ ๊ฐ€์ค‘์น˜ ์ตœ์ ํ™”์— ํ™œ์šฉํ•˜๊ณ , 15%๋Š” ๊ฒ€์ฆ์— ํ• ๋‹นํ•˜์—ฌ ํ•™์Šต๋œ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ํ‰๊ฐ€์™€ ๊ณผ์ ํ•ฉ ๋ฐฉ์ง€๋ฅผ ์ง€์›ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ–ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋‚˜๋จธ์ง€ 15%๋Š” ํ…Œ์ŠคํŠธ์— ์‚ฌ์šฉํ•˜์—ฌ ์ตœ์ข… ์„ฑ๋Šฅ์„ ๊ฐ๊ด€์ ์œผ๋กœ ํ‰๊ฐ€ํ–ˆ๋‹ค.

AI ํ•™์Šต์—๋Š” Python ๊ธฐ๋ฐ˜ ๋”ฅ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌ์ธ TensorFlow์™€ Keras๋ฅผ ์ ์šฉํ–ˆ๋‹ค. ํ•™์Šต ์‹œ๊ฐ„ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ํ•˜๋“œ์›จ์–ด ํ™˜๊ฒฝ์€ Intel i7-13700H CPU์™€ NVIDIA RTX 4060 Laptop GPU๊ฐ€ ํƒ‘์žฌ๋œ ๋™์ผํ•œ ์‹œ์Šคํ…œ ํ™˜๊ฒฝ์—์„œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ์‹œ์Šคํ…œ ํ™˜๊ฒฝ์€ ๋Œ€๊ทœ๋ชจ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ์ถฉ๋ถ„ํ•œ ์—ฐ์‚ฐ ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•˜์—ฌ ๋ชจ๋ธ ๊ฐ„ ๋น„๊ต์‹œ ์ผ๊ด€๋œ ๊ฒฐ๊ณผ ํ™•๋ณด์— ์ ํ•ฉํ•˜๋‹ค. ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ Gradient ํ‰๊ท ๊ณผ Gradient ์ œ๊ณฑ ํ‰๊ท ์„ ๋™์‹œ์— ์ถ”์ •ํ•˜๋Š” Adam Optimizer๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ[13], ์˜ˆ์ธก๊ณผ ์‹ค์ œ ์ •๋‹ต ์‚ฌ์ด์˜ ์ฐจ์ด๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์†์‹ค ํ•จ์ˆ˜๋Š” ์ •์ƒยท๋น„์ •์ƒ ๊ตฌ๋ถ„ ๊ฐ™์€ ์ด์ง„ ๋ถ„๋ฅ˜์— ์ ํ•ฉํ•œ Binary Cross-Entropy๋ฅผ ์ ์šฉํ–ˆ๋‹ค. ๊ธฐ์กด ์‹œ๊ณ„์—ด ์ง„๋‹จ ์—ฐ๊ตฌ์—์„œ ์ผ๋ฐ˜์ ์œผ๋กœ ํ™œ์šฉ๋˜๋Š” ๊ธฐ์ค€์„ ์ฐธ๊ณ ํ•˜์—ฌ ํ•™์Šต ํšŸ์ˆ˜ Epoch๋Š” 50์œผ๋กœ ์„ค์ •ํ–ˆ๋‹ค[6][8][12]. ํ•œ ๋ฒˆ์— ํ•™์Šตํ•˜๋Š” ๋ฐ์ดํ„ฐ ๊ฐœ์ˆ˜์ธ Batch size๋Š” 32๋กœ ์„ค์ •ํ•˜์˜€๋Š”๋ฐ, ์ด๋Š” Gradient ์•ˆ์ •์„ฑ๊ณผ GPU ๋ฉ”๋ชจ๋ฆฌ ํšจ์œจ ๊ท ํ˜•์œผ๋กœ ์šฐ์ˆ˜ํ•œ ๊ตฌ๊ฐ„์ธ 16~64์˜ ์ค‘๊ฐ„๊ฐ’์œผ๋กœ ์„ค์ •ํ–ˆ๋‹ค[6][8]. ๋‘ ๊ฐ’์„ ๋™์ผํ•˜๊ฒŒ ์„ค์ •ํ•˜์—ฌ ํ•™์Šต ์•ˆ์ •์„ฑ๊ณผ ๋ชจ๋ธ ๊ฐ„ ๊ณต์ •ํ•œ ๋น„๊ต๋ฅผ ๋ณด์žฅํ•˜๋„๋ก ํ–ˆ๋‹ค. ๋˜ํ•œ Early Stopping๊ณผ ReduceLROnPlateau(ํ•™์Šต๋ฅ  ๊ฐ์†Œ) ๊ธฐ๋ฒ•์„ ๋ณ‘ํ–‰ ์ ์šฉํ•˜์—ฌ ๋ถˆํ•„์š”ํ•œ ์—ฐ์‚ฐ์„ ์ค„์ด๊ณ  ํ•™์Šต ์ˆ˜๋ ด ์•ˆ์ •์„ฑ๊ณผ ์ตœ์  ์„ฑ๋Šฅ ํ™•๋ณด๋ฅผ ๋™์‹œ์— ๋‹ฌ์„ฑํ–ˆ๋‹ค[15][16].

ํ‘œ 5๋Š” ๋ฐ์ดํ„ฐ ๋ถ„ํ•  ๋ฐฉ์‹๊ณผ ํ•™์Šต ํ™˜๊ฒฝ์„ ์š”์•ฝํ•œ ๊ฒƒ์œผ๋กœ, ๋‹ค์–‘ํ•œ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๊ณต์ •ํ•˜๊ฒŒ ๋น„๊ตํ•  ์ˆ˜ ์žˆ๋Š” ์กฐ๊ฑด์œผ๋กœ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋‹ˆํ„ฐ๋ง ๊ธฐ๋ฒ•์˜ ํƒ€๋‹น์„ฑ๊ณผ ์žฌํ˜„ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ๋„๋ก ํ–ˆ๋‹ค.

ํ‘œ 5. ๋ฐ์ดํ„ฐ์…‹ ๋ถ„ํ•  ๋ฐ ํ•™์Šต ํ™˜๊ฒฝ ์š”์•ฝ

Table 5. Dataset partitioning and training environment summary

ํ•ญ๋ชฉ ๋‚ด์šฉ
๋ฐ์ดํ„ฐ ๊ทœ๋ชจ ์ด 400์„ธํŠธ(์ •์ƒ 200, ๋น„์ •์ƒ 200)
๋ฐ์ดํ„ฐ ๋ถ„ํ•  ํ•™์Šต 70%, ๊ฒ€์ฆ 15%, ํ…Œ์ŠคํŠธ 15%
์ „์ฒ˜๋ฆฌ ๋ฐฉ์‹ Min-Max ์ •๊ทœํ™”(0~1๋ฒ”์œ„)
ํ•™์Šต ํ™˜๊ฒฝ Intel i7-13700H CPU, NVIDIA RTX 4060 Laptop GPU
ํ”„๋ ˆ์ž„์›Œํฌ Python, TensorFlow, Keras
ํ•™์Šต ํŒŒ๋ผ๋ฏธํ„ฐ Epoch 50, Batch size 32, Adam ์˜ตํ‹ฐ๋งˆ์ด์ €, Binary Cross-Entropy ์†์‹ค ํ•จ์ˆ˜
๋ณด์กฐ ๊ธฐ๋ฒ• Early Stopping, ReduceLROnPlateau

4. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„

4.1 ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐ์ดํ„ฐ ๋ชจ๋ธ๋ง

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ์˜ ์ •์ƒ ๋ฐ ๋น„์ •์ƒ ์ƒํƒœ๋ฅผ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•ด MATLAB Simulink๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ทธ๋ฆผ 3๊ณผ ๊ฐ™์ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ์„ ๊ตฌ์„ฑํ–ˆ๋‹ค. ํ•˜๋‚˜์˜ ๋ชจ๋ธ์—์„œ ์ „์••ยท์ „๋ฅ˜ยท์ฃผํŒŒ์ˆ˜ยท์˜จ๋„ ๋„ค ๊ฐ€์ง€ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋™์‹œ์— ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„ํ•˜์˜€์œผ๋ฉฐ, ์ •์ƒ ์ƒํƒœ์™€ ๋น„์ •์ƒ ์ƒํƒœ ๊ฐ๊ฐ 200์„ธํŠธ์”ฉ ์ด 400์„ธํŠธ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ–ˆ๋‹ค. ๋น„์ •์ƒ ์ƒํƒœ์—์„œ๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๋‹น 50๊ฐœ์˜ ๊ณ ์žฅ ์ƒํƒœ๋ฅผ ์ ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ด์ƒ ์กฐ๊ฑด์„ ๋ฐ˜์˜ํ–ˆ๋‹ค.

์ •์ƒ ์ƒํƒœ์—์„œ ๋ชจ๋“  ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ์•ˆ์ •์ ์œผ๋กœ ์œ ์ง€๋˜๋„๋ก ๊ตฌ์„ฑํ•˜์˜€๊ณ , ๋น„์ •์ƒ ์ƒํƒœ์—์„œ๋Š” ์‹ค์ œ ์šด์šฉ ํ™˜๊ฒฝ์˜ ๊ณ ์žฅ ํ˜„์ƒ์„ ๋ฐ˜์˜ํ–ˆ๋‹ค. ์ „์••์˜ ์ˆœ๊ฐ„์ ์ธ ๊ฐ•ํ•˜ ๋˜๋Š” ์ƒ์Šน, ์ „๋ฅ˜์˜ ๊ธ‰๊ฒฉํ•œ ์ฆ๊ฐ, ์ฃผํŒŒ์ˆ˜๋Š” FFT ๋ถ„์„์‹œ 1,700 Hz ์„ฑ๋ถ„์˜ ๊ฐ์‡  ๋˜๋Š” ์ฆํญ, ๋‚ด๋ถ€-์™ธ๋ถ€ ์˜จ๋„์ฐจ(ฮ”T) ์ƒ์Šน ๋“ฑ์˜ ํ˜•ํƒœ๋กœ ๋ชจ๋ธ๋งํ–ˆ๋‹ค.

๊ทธ๋ฆผ 4๋Š” ์ „์••์—์„œ ์ •์ƒ ์ƒํƒœ์ธ ๊ฒฝ์šฐ์™€ ๋น„์ •์ƒ ์ƒํƒœ์—์„œ ์ˆœ๊ฐ„ ์ „์•• ๊ฐ•ํ•˜๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š” ํŒŒํ˜•์„ ๋น„๊ตํ–ˆ๋‹ค. ๊ทธ๋ฆผ 5๋Š” ์ „๋ฅ˜ ํŒŒํ˜•์œผ๋กœ ์ •์ƒ ์ƒํƒœ์—์„œ๋Š” ์•ฝ 500 A๊ฐ€ ์œ ์ง€๋˜๋„๋ก ํ•˜์˜€๊ณ  ๋น„์ •์ƒ ์ƒํƒœ์—์„œ๋Š” ์ „๋ฅ˜๊ฐ€ ๊ธ‰์ƒ์Šน๋˜๋„๋ก ํ–ˆ๋‹ค. ๊ทธ๋ฆผ 6์€ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์œผ๋กœ ์ •์ƒ ์ƒํƒœ์—์„œ FFT๋ฅผ ๊ฑฐ์นœ 1,700 Hz ์„ฑ๋ถ„์ด ์•ˆ์ •์ ์œผ๋กœ ์œ ์ง€๋˜์—ˆ๊ณ  ๋น„์ •์ƒ ์ƒํƒœ์—์„œ๋Š” ์‹ ํ˜ธ๊ฐ€ ํฌ๊ฒŒ ๊ฐ์‡ ๋˜์—ˆ๋‹ค. ๊ทธ๋ฆผ 7์˜ ์˜จ๋„์ฐจ(ฮ”T)์—์„œ๋Š” ์ •์ƒ ์ƒํƒœ๊ฐ€ ์•ฝ 5 โ„ƒ ์ˆ˜์ค€์œผ๋กœ ์œ ์ง€๋˜๊ณ  ๋น„์ •์ƒ ์ƒํƒœ์—์„œ๋Š” ์ ์ง„์  ๋˜๋Š” ๊ธ‰๊ฒฉํ•œ ์ƒ์Šน์ด ๋ฐœ์ƒํ•˜๋„๋ก ํ–ˆ๋‹ค.

์ด์™€ ๊ฐ™์ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ ์ƒ์„ฑ๋œ ํŒŒํ˜• ๋ฐ์ดํ„ฐ๋Š” ์ •์ƒ๊ณผ ๋น„์ •์ƒ ์ƒํƒœ๋ฅผ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋Š” ํŠน์„ฑ์„ ๋ณด์˜€์œผ๋ฉฐ, ์ธ๊ณต์ง€๋Šฅ ํ•™์Šต์— ํ™œ์šฉํ•˜๊ธฐ์— ์ ํ•ฉํ•œ ๊ณ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์ž„์„ ํ™•์ธํ–ˆ๋‹ค.

๊ทธ๋ฆผ 3. Simulink ๊ธฐ๋ฐ˜ ์„ผ์‹ฑ ๋ธ”๋ก ๋‹ค์ด์–ด๊ทธ๋žจ

Fig. 3. Block diagram of sensing model in Simulink

../../Resources/kiee/KIEE.2025.74.12.2476/fig3.png

๊ทธ๋ฆผ 4. ์ „์•• ์ •์ƒ/๋น„์ •์ƒ

Fig. 4. Voltage waveforms under normal and abnormal conditions

../../Resources/kiee/KIEE.2025.74.12.2476/fig4.png

๊ทธ๋ฆผ 5. ์ „๋ฅ˜ ์ •์ƒ/๋น„์ •์ƒ

Fig. 5. Current waveforms under normal and abnormal conditions

../../Resources/kiee/KIEE.2025.74.12.2476/fig5.png

๊ทธ๋ฆผ 6. ์ฃผํŒŒ์ˆ˜ ์ •์ƒ/๋น„์ •์ƒ

Fig. 6. Frequency spectra under normal and abnormal conditions

../../Resources/kiee/KIEE.2025.74.12.2476/fig6.png

๊ทธ๋ฆผ 7. ์˜จ๋„ ์ •์ƒ/๋น„์ •์ƒ

Fig. 7. Temperature difference (ฮ”T) under normal and abnormal conditions

../../Resources/kiee/KIEE.2025.74.12.2476/fig7.png

4.2 ๋ชจ๋ธ๋ณ„ ํ•™์Šต ๊ฒฐ๊ณผ

์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ๋ฅผ ๋ชจ์‚ฌํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ ์ƒ์„ฑ๋œ ์ด 400์„ธํŠธ์˜ ์ •์ƒยท๋น„์ •์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•™์Šต๊ณผ ๊ฒ€์ฆ์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ์ „์ฒด ๋ฐ์ดํ„ฐ๋ฅผ 10๊ฐœ ๊ตฌ๊ฐ„์œผ๋กœ ๋ถ„ํ• ํ•˜๊ณ  ๊ฐ ๊ตฌ๊ฐ„์„ ๊ฒ€์ฆ์šฉ์œผ๋กœ ์ˆœ์ฐจ ๊ต์ฒดํ•˜๋ฉฐ ํ•™์Šตํ•˜๋Š” ๋ฐฉ๋ฒ•์ธ 10-fold ๊ต์ฐจ๊ฒ€์ฆ ๊ธฐ๋ฒ•์„ ์ ์šฉํ–ˆ๋‹ค[17]. ์ด๋Š” ๋ฐ์ดํ„ฐ ์˜์กด์„ฑ์„ ๊ฐ์†Œ์‹œํ‚ค๊ณ  ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์ด๋‹ค. ๋ชจ๋ธ ํ‰๊ฐ€์ง€ํ‘œ๋กœ ์ •ํ™•๋„(Accuracy)์™€ F1-score, ROC-AUC, PR-AUC, ํ•™์Šต ์‹œ๊ฐ„์„ ์„ ์ •ํ–ˆ๋‹ค. F1-score๋Š” ์ •๋ฐ€๋„(Precision)์™€ ์žฌํ˜„์œจ(Recall)์˜ ์กฐํ™” ํ‰๊ท ์œผ๋กœ, ํด๋ž˜์Šค ๊ฐ„ ๋ถˆ๊ท ํ˜• ์ƒํ™ฉ์—์„œ๋„ ์•ˆ์ •๋œ ํ‰๊ฐ€๊ฐ€ ๊ฐ€๋Šฅํ•œ ์ง€ํ‘œ์ด๋‹ค[18]. ROC-AUC๋Š” ์ž„๊ณ„์น˜ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ „์ฒด ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ PR-AUC๋Š” ์–‘์„ฑ ํด๋ž˜์Šค(Positive Class) ๊ฒ€์ถœ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค[19][20]. ์—ฌ๊ธฐ์„œ ์–‘์„ฑ ํด๋ž˜์Šค๋Š” ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ์˜ ๋น„์ •์ƒ ์ƒํƒœ๋ฅผ ์˜๋ฏธํ•˜๋ฉฐ, ํ•ด๋‹น ์ƒํƒœ๋ฅผ ์–ผ๋งˆ๋‚˜ ์ •ํ™•ํžˆ ๊ฒ€์ถœํ•˜๋Š”๊ฐ€๋ฅผ ํ‰๊ฐ€ํ•œ๋‹ค. ๊ฒ€์ฆ ๋‹จ๊ณ„์—์„œ ์ตœ๋Œ€์˜ F1-score๊ฐ€ ๋˜๋„๋ก ์ž„๊ณ„์น˜๋ฅผ ์กฐ์ •ํ–ˆ๋‹ค. ํ•™์Šต ์•ˆ์ •ํ™”์™€ ๊ณผ์ ํ•ฉ ๋ฐฉ์ง€๋ฅผ ์œ„ํ•˜์—ฌ Early Stopping, ReduceLROnPlateau, Class Weight ๊ธฐ๋ฒ•์„ ๋ณ‘ํ–‰ ์ ์šฉํ–ˆ๋‹ค[15][16][21][22]. Early Stopping์€ ๊ฒ€์ฆ ์„ฑ๋Šฅ ํ–ฅ์ƒ์ด ์ •์ฒด๋  ๊ฒฝ์šฐ ํ•™์Šต์„ ์กฐ๊ธฐ์— ์ข…๋ฃŒํ•˜๋ฉฐ ReduceLROnPlateau๋Š” ํ•™์Šต ์ •์ฒด ๊ตฌ๊ฐ„์—์„œ ํ•™์Šต๋ฅ ์„ ์ž๋™์œผ๋กœ ๋‚ฎ์ถ”์–ด ์ˆ˜๋ ด ์†๋„๋ฅผ ๊ฐœ์„ ํ–ˆ๋‹ค. Class Weight ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜•์„ ๋ณด์ •ํ•˜๊ธฐ ์œ„ํ•ด ์†์‹ค ํ•จ์ˆ˜์— ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•˜์—ฌ ๋น„์ •์ƒ ์ƒํƒœ์— ๋Œ€ํ•œ ํ•™์Šต ๋ฏผ๊ฐ๋„๋ฅผ ๋†’์˜€๋‹ค.

๋„ค ๊ฐ€์ง€ ํ•™์Šต ๊ธฐ๋ฒ• ์ค‘ CNN์ด ์ •ํ™•๋„์—์„œ ํ‰๊ท  ์ •ํ™•๋„ 99%, F1-score 92%๋กœ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ROC-AUC์™€ PR-AUC ๋ชจ๋‘ 0.99์— ๊ทผ์ ‘ํ•˜๋Š” ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์™”๋‹ค. fold ๊ฐ„ ์„ฑ๋Šฅ ํŽธ์ฐจ๋„ ์ž‘๊ณ  ํ‰๊ท  ํ•™์Šต ์‹œ๊ฐ„์ด 28.7์ดˆ๋กœ ์—ฐ์‚ฐ ํšจ์œจ์ด ์šฐ์ˆ˜ํ–ˆ๋‹ค.

CNN-LSTM ๊ธฐ๋ฒ•์€ ํ‰๊ท  ์ •ํ™•๋„๋Š” 97%์ด๋ฉฐ F1-score๋Š” 95% ์ด์ƒ์ด๊ณ  AUC๊ฐ€ 0.99์— ๊ทผ์ ‘ํ•˜์—ฌ CNN๊ณผ ์œ ์‚ฌํ•œ ์ˆ˜์ค€์˜ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ•ด๋‹น ๊ธฐ๋ฒ•์˜ ๊ตฌ์กฐ์  ๋ณต์žก์„ฑ์œผ๋กœ ํ‰๊ท  ํ•™์Šต ์‹œ๊ฐ„์€ 51์ดˆ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

LSTM์€ ํ‰๊ท  ์ •ํ™•๋„ 97%, F1-score 94%์ด๊ณ  ROC-AUC 0.96์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ‰๊ท  ํ•™์Šต ์‹œ๊ฐ„์ด 352์ดˆ๋กœ ๊ฐ€์žฅ ๊ธธ์—ˆ๊ณ , fold ๊ฐ„ ์„ฑ๋Šฅ ๋ถ„์‚ฐ์ด ํฌ๊ฒŒ ๋ฐœ์ƒํ–ˆ๋‹ค.

MLP๋Š” ๊ฐ€์žฅ ๋‹จ์ˆœํ•œ ๊ตฌ์กฐ์ธ ๋งŒํผ ํ‰๊ท  ํ•™์Šต ์‹œ๊ฐ„์ด 14.1์ดˆ ์ „ํ›„ ์ˆ˜์ค€์œผ๋กœ ๋งค์šฐ ์งง์•˜๋‹ค. ํ•˜์ง€๋งŒ ์ •ํ™•๋„๋Š” 88.5% ์ •๋„์ด๊ณ  ROC-AUC๋Š” ์•ฝ 0.85์— ๋จธ๋ฌผ๋ €๋‹ค.

ํ‘œ 6. ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ๋ณ„ ์„ฑ๋Šฅ ๋น„๊ต

Table 6. AI Model Performance Comparison

๋ชจ๋ธ ์ •ํ™•๋„(%) F1-score(%) AUC(0~1) ํ•™์Šต ์‹œ๊ฐ„(์ดˆ)
CNN 99 92 โ‰ฅ0.99 28.7ยฑ8.3
LSTM 97 94 0.96 352ยฑ280
MLP 88.5 86 0.85 14.1ยฑ3.9
CNN-LSTM 97 95 โ‰ฅ0.99 51ยฑ30.6

๊ทธ๋ฆผ 8. ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ๋ณ„ ์„ฑ๋Šฅ ๋น„๊ต(์ •ํ™•๋„, ROC-AUC, PR-AUC, ํ•™์Šต ์‹œ๊ฐ„)

Fig. 8. Performance Comparison of AI Models (Accuracy, ROC-AUC, PR-AUC, Training Time)

../../Resources/kiee/KIEE.2025.74.12.2476/fig8.png

4.3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ

๋„ค ๊ฐ€์ง€ ์ธ๊ณต์ง€๋Šฅ ํ•™์Šต ๊ธฐ๋ฒ• ๋ชจ๋‘ ์ •์ƒ๊ณผ ๋น„์ •์ƒ ์ƒํƒœ๋ฅผ ์ผ์ • ์ˆ˜์ค€ ์ด์ƒ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ์„ฑ๋Šฅ๊ณผ ํšจ์œจ์„ฑ ์ธก๋ฉด์—์„œ ์ฐจ์ด๋ฅผ ๋ณด์˜€๋‹ค. CNN์€ ๋‹จ์ˆœํ•œ ๊ตฌ์กฐ์—์„œ๋„ 99%์˜ ์ •ํ™•๋„๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ๊ธฐ๋กํ•˜์˜€์œผ๋ฉฐ, ROC-AUC์™€ PR-AUC๋„ 0.99 ์ด์ƒ์œผ๋กœ ๋†’์€ ์‹ ๋ขฐ์„ฑ์„ ํ™•๋ณดํ–ˆ๋‹ค. ๋˜ํ•œ ํ•™์Šต ์‹œ๊ฐ„์ด ์•ฝ 28.7์ดˆ๋กœ ์งง์•„ ์‹ค์‹œ๊ฐ„ ๋ชจ๋‹ˆํ„ฐ๋ง ํ™˜๊ฒฝ์— ์ ํ•ฉํ•  ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

LSTM์€ ์‹œ๊ณ„์—ด ์˜์กด์„ฑ์„ ๋ฐ˜์˜ํ•˜์—ฌ ์žฅ๊ธฐ์  ์ด์ƒ ํƒ์ง€์—์„œ ๊ฐ•์ ์„ ๋ณด์ด๋Š” ๋งŒํผ ์ •ํ™•๋„๋Š” 97%, F1-score๋Š” 94%๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ‰๊ท  ํ•™์Šต ์‹œ๊ฐ„์ด 352์ดˆ๋กœ ๊ธธ๊ณ  fold ๊ฐ„ ํŽธ์ฐจ๊ฐ€ ์ปค ์‹ค์‹œ๊ฐ„ ๋ชจ๋‹ˆํ„ฐ๋ง ์ ์šฉ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค.

๊ตฌ์กฐ๊ฐ€ ๊ฐ€์žฅ ๋‹จ์ˆœํ•œ MLP๋Š” 14.1์ดˆ์˜ ๊ฐ€์žฅ ์งง์€ ํ‰๊ท  ํ•™์Šต ์‹œ๊ฐ„์ด์—ˆ์œผ๋‚˜, ์ •ํ™•๋„๋Š” 88.5%, AUC 0.85์— ๋จธ๋ฌผ๋Ÿฌ ๊ธฐ์ค€ ํ•™์Šต ๊ธฐ๋ฒ•์œผ๋กœ์„œ ์ˆ˜์น˜๋ฅผ ํ™•์ธํ–ˆ๋‹ค.

CNN-LSTM ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๊ธฐ๋ฒ•์€ ๋‘ ๊ธฐ๋ฒ•์˜ ์žฅ์ ์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์ •ํ™•๋„์—์„œ 97%, F1-score 95%, AUC 0.99 ์ด์ƒ์œผ๋กœ ์ค€์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ LSTM์˜ ์˜ํ–ฅ์œผ๋กœ CNN๋ณด๋‹ค ๊ตฌ์กฐ๊ฐ€ ๋ณต์žกํ•ด์ ธ ํ‰๊ท  ํ•™์Šต ์‹œ๊ฐ„์ด ์•ฝ 51์ดˆ๋กœ ๋‹ค์†Œ ์ฆ๊ฐ€ํ–ˆ๋‹ค. CNN์„ ๋Œ€์‹ ํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•™์Šต๋ชจ๋ธ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ถ”๊ฐ€์ ์ธ ์ตœ์ ํ™”๊ฐ€ ํ•„์š”ํ•˜๋‹ค.

์ข…ํ•ฉ์ ์œผ๋กœ CNN์ด ์„ฑ๋Šฅ๊ณผ ํšจ์œจ์„ฑ์˜ ๊ท ํ˜• ๋ฉด์—์„œ ๊ฐ€์žฅ ์‹ค์šฉ์ ์ธ ๋ชจ๋ธ๋กœ ํ‰๊ฐ€๋˜๋ฉฐ CNN-LSTM์€ ๋ณตํ•ฉ์ ์ธ ์ด์ƒ ์‹ ํ˜ธ ํƒ์ง€์—์„œ์˜ ํ™•์žฅ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๋‹จ์ˆœํ•œ ์ •์ƒ ๋ฒ”์œ„ ๊ธฐ๋ฐ˜ ๊ฐ์‹œ๋ฅผ ๋„˜์–ด AI ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ๋ถ„์„ ์ ‘๊ทผ๋ฒ•์ด ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ๋ชจ๋‹ˆํ„ฐ๋ง์— ํšจ๊ณผ์ ์œผ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.

5. ๊ฒฐ ๋ก 

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ์ƒํƒœ๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ธฐ ์œ„ํ•ด ์ „์••ยท์ „๋ฅ˜ยท์ฃผํŒŒ์ˆ˜ยท์˜จ๋„์ฐจ(ฮ”T)๋ฅผ ์ฃผ์š” ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ์ •์˜ํ•˜๊ณ , ์ •์ƒ ๋ฐ ๋น„์ •์ƒ ์กฐ๊ฑด์—์„œ์˜ ํ˜„์ƒ์„ MATLAB Simulink ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ ๋ชจ์‚ฌํ–ˆ๋‹ค. ์ด 400์„ธํŠธ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€์œผ๋ฉฐ, CNN, LSTM, MLP, CNN-LSTM ๋„ค ๊ฐ€์ง€ ์ธ๊ณต์ง€๋Šฅ ํ•™์Šต ๊ธฐ๋ฒ•์œผ๋กœ 10-fold ๊ต์ฐจ๊ฒ€์ฆ์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ๋น„๊ตํ–ˆ๋‹ค.

์‹คํ—˜ ๊ฒฐ๊ณผ CNN๊ณผ CNN-LSTM์ด ๋†’์€ ์ •ํ™•๋„์™€ ๋น ๋ฅธ ํ•™์Šต ์†๋„๋ฅผ ๋™์‹œ์— ํ™•๋ณดํ•˜์—ฌ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ํŠนํžˆ CNN์€ ๋‹จ์ˆœํ•œ ๊ตฌ์กฐ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋†’์€ ์ •ํ™•๋„๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ์งง์€ ํ•™์Šต ์‹œ๊ฐ„์„ ๋™์‹œ์— ํ™•๋ณดํ•˜์—ฌ ์‹ค์šฉ์„ฑ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. LSTM ์—ญ์‹œ ์ •ํ™•๋„ ์ธก๋ฉด์—์„œ ๊ฐ•์ ์„ ๋ณด์˜€์œผ๋‚˜, ์—ฐ์‚ฐ ์‹œ๊ฐ„ ์ฆ๊ฐ€์™€ ์„ฑ๋Šฅ ์•ˆ์ •์„ฑ์—์„œ ํ•œ๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. MLP๋Š” ์ •ํ™•์„ฑ์ด ๋น„๊ต์  ๋–จ์–ด์ ธ์„œ ๊ธฐ์ค€์„  ๋ชจ๋ธ๋กœ์„œ์˜ ์˜๋ฏธ์— ๊ทธ์ณค๋‹ค.

์ด์ฒ˜๋Ÿผ AI์— ๊ธฐ๋ฐ˜ํ•œ ๊ณ„์ธก์ด ๊ธฐ์กด ์ •์ƒ ๋ฒ”์œ„ ๊ธฐ๋ฐ˜ ๊ฒ€์‚ฌ ๋ฐฉ์‹์„ ๋ณด์™„ํ•˜๋ฉฐ, ์ž„ํ”ผ๋˜์Šค ๋ณธ๋“œ ๋ชจ๋‹ˆํ„ฐ๋ง์— ํšจ๊ณผ์ ์œผ๋กœ ์ ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ–ˆ๋‹ค. ๋‹ค๋งŒ ๋ณธ ์—ฐ๊ตฌ๋Š” ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜ํ•˜์—ฌ ํ‰๊ฐ€ํ•œ ๊ฒƒ์œผ๋กœ ํ–ฅํ›„ ์‹ค์ œ ํ˜„์žฅ ๋ฐ์ดํ„ฐ๋ฅผ ์ ์šฉํ•˜์—ฌ ๊ฒ€์ฆ์ด ํ•„์š”ํ•˜๋‹ค. ๋˜ํ•œ ์‹ ํ˜ธ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์˜ ๋‹ค์–‘ํ™”์™€ ์žฅ์•  ์กฐ๊ฑด ํ™•์žฅํ•˜๊ณ , ํ•™์Šต ๊ธฐ๋ฒ• ๊ฒฝ๋Ÿ‰ํ™” ๋ฐ ์ถ”๋ก  ์ตœ์ ํ™” ์—ฐ๊ตฌ๋ฅผ ๋ณ‘ํ–‰ํ•œ๋‹ค๋ฉด ๋‹จ์ˆœ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ๋„˜์–ด ์‹ค์‹œ๊ฐ„ ์˜ˆ์ธก ์ •๋น„ ์ฒด๊ณ„๋กœ ๋ฐœ์ „ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋”์šฑ ์ปค์งˆ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.

References

1 
M. Andrusca, M. Adam, A. Dragomir, E. Lunca, R. Seeram, O. Postolache, 2020, Condition Monitoring System and Faults Detection for Impedance Bonds from Railway Infrastructure, Applied SciencesDOI
2 
H. J. Wilson, 1985, Impedance BondGoogle Search
3 
S. Kumar, A. Singh, R. Kumar, 2013, Development and Performance Analysis of a Novel Impedance Bond for Railway Track Circuits, IET Electrical Systems in Transportation, pp. 50-55DOI
4 
A. Nechifor, A.-M. Dumitrescu, I. Fฤƒgฤƒrฤƒศ™an, 2022, Transformer Fault Diagnosis Methods Based on Dissolved Gas Analysis: A Review, SensorsDOI
5 
Z. Faizol, M. N. Othman, A. A. Bakar, N. A. Wahab, 2023, Detection Method of Partial Discharge on Transformer and Its Locating Technique: A Review, Applied SciencesDOI
6 
J. Zhou, Y. Zhang, Y. Huang, F. Liu, 2021, Fault Diagnosis of Track Circuits Based on Timeโ€“Frequency Image and CNN, IEEE Sensors Journal, pp. 26928-26939DOI
7 
2003, Railway Applicationsโ€”Environmental Conditions for Equipmentโ€”Part 3: Equipment for Signalling and TelecommunicationsGoogle Search
8 
Z. Xing, H. Wu, W. Liang, Q. Chen, 2022, Railway Track Circuit Fault Diagnosis Based on 1D Convolutional Neural Network, pp. 6828-6833DOI
9 
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998, Gradient- Based Learning Applied to Document Recognition, pp. 2278-2324DOI
10 
S. Hochreiter, J. Schmidhuber, 1997, Long Short-Term Memory, Neural Computation, pp. 1735-1780DOI
11 
D. E. Rumelhart, G. E. Hinton, R. J. Williams, 1986, Learning Representations by Back-Propagating Errors, Nature, pp. 533-536DOI
12 
X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-C. Woo, 2015, Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting, arXiv preprintGoogle Search
13 
D. P. Kingma, J. Ba, 2015, Adam: A Method for Stochastic Optimization, arXiv preprintGoogle Search
14 
2025, Simulink (R2025a) โ€” Product DocumentationGoogle Search
15 
L. Prechelt, 2012, Neural Networks: Tricks of the Trade, pp. 53-67Google Search
16 
2025, ReduceLROnPlateau โ€” Callback DocumentationGoogle Search
17 
R. Kohavi, 1995, A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, pp. 1137-1145Google Search
18 
D. M. W. Powers, 2011, Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation, Journal of Machine Learning Technologies, pp. 37-63Google Search
19 
T. Fawcett, 2006, An Introduction to ROC Analysis, Pattern Recognition Letters, pp. 861-874DOI
20 
T. Saito, M. Rehmsmeier, 2015, The Precisionโ€“Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets, PLoS ONEDOI
21 
H. He, E. A. Garcia, 2009, Learning from Imbalanced Data, IEEE Transactions on Knowledge and Data Engineering, pp. 1263-1284DOI
22 
M. Buda, A. Maki, M. A. Mazurowski, 2018, A Systematic Study of the Class Imbalance Problem in Convolutional Neural Networks, Neural Networks, pp. 249-259DOI

์ €์ž์†Œ๊ฐœ

์ •์ธ๋ณต (In Bok Jung)
../../Resources/kiee/KIEE.2025.74.12.2476/au1.png

He received his masterโ€™s degree in Electronic and Electrical Engineering from Dankook University, Korea. He is currently pursuing his Ph.D. degree in the Graduate School of Railway (Department of Global Railway Systems) at Seoul National University of Science and Technology, Korea. His research interests include railway ground signaling systems and AI-based predictive maintenance technologies. E-mail: ikojino@nate.com

์ตœ์Šนํ˜ธ (Seung Ho Choi)
../../Resources/kiee/KIEE.2025.74.12.2476/au2.png

He received the B.S. degree in Electronic Engineering from Hanyang University, Seoul, Korea, in 1991, and the M.S. and Ph.D. degrees in Electrical Engineering from Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea, in 1993 and 1999, respectively. Since August 2002, he has been a Professor in the Department of Electronic Engineering at Seoul National University of Science and Technology, Seoul, Korea. E-mail: shchoi@seoultech.ac.kr