• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
M. Andrusca, M. Adam, A. Dragomir, E. Lunca, R. Seeram, O. Postolache, 2020, Condition Monitoring System and Faults Detection for Impedance Bonds from Railway Infrastructure, Applied SciencesDOI
2 
H. J. Wilson, 1985, Impedance BondGoogle Search
3 
S. Kumar, A. Singh, R. Kumar, 2013, Development and Performance Analysis of a Novel Impedance Bond for Railway Track Circuits, IET Electrical Systems in Transportation, pp. 50-55DOI
4 
A. Nechifor, A.-M. Dumitrescu, I. Făgărășan, 2022, Transformer Fault Diagnosis Methods Based on Dissolved Gas Analysis: A Review, SensorsDOI
5 
Z. Faizol, M. N. Othman, A. A. Bakar, N. A. Wahab, 2023, Detection Method of Partial Discharge on Transformer and Its Locating Technique: A Review, Applied SciencesDOI
6 
J. Zhou, Y. Zhang, Y. Huang, F. Liu, 2021, Fault Diagnosis of Track Circuits Based on Time–Frequency Image and CNN, IEEE Sensors Journal, pp. 26928-26939DOI
7 
2003, Railway Applications—Environmental Conditions for Equipment—Part 3: Equipment for Signalling and TelecommunicationsGoogle Search
8 
Z. Xing, H. Wu, W. Liang, Q. Chen, 2022, Railway Track Circuit Fault Diagnosis Based on 1D Convolutional Neural Network, pp. 6828-6833DOI
9 
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998, Gradient- Based Learning Applied to Document Recognition, pp. 2278-2324DOI
10 
S. Hochreiter, J. Schmidhuber, 1997, Long Short-Term Memory, Neural Computation, pp. 1735-1780DOI
11 
D. E. Rumelhart, G. E. Hinton, R. J. Williams, 1986, Learning Representations by Back-Propagating Errors, Nature, pp. 533-536DOI
12 
X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-C. Woo, 2015, Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting, arXiv preprintGoogle Search
13 
D. P. Kingma, J. Ba, 2015, Adam: A Method for Stochastic Optimization, arXiv preprintGoogle Search
14 
2025, Simulink (R2025a) — Product DocumentationGoogle Search
15 
L. Prechelt, 2012, Neural Networks: Tricks of the Trade, pp. 53-67Google Search
16 
2025, ReduceLROnPlateau — Callback DocumentationGoogle Search
17 
R. Kohavi, 1995, A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, pp. 1137-1145Google Search
18 
D. M. W. Powers, 2011, Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation, Journal of Machine Learning Technologies, pp. 37-63Google Search
19 
T. Fawcett, 2006, An Introduction to ROC Analysis, Pattern Recognition Letters, pp. 861-874DOI
20 
T. Saito, M. Rehmsmeier, 2015, The Precision–Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets, PLoS ONEDOI
21 
H. He, E. A. Garcia, 2009, Learning from Imbalanced Data, IEEE Transactions on Knowledge and Data Engineering, pp. 1263-1284DOI
22 
M. Buda, A. Maki, M. A. Mazurowski, 2018, A Systematic Study of the Class Imbalance Problem in Convolutional Neural Networks, Neural Networks, pp. 249-259DOI