KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2025-12
(Vol.74 No.12)
10.5370/KIEE.2025.74.12.2476
Journal XML
XML
PDF
INFO
REF
References
1
M. Andrusca, M. Adam, A. Dragomir, E. Lunca, R. Seeram, O. Postolache, 2020, Condition Monitoring System and Faults Detection for Impedance Bonds from Railway Infrastructure, Applied Sciences
2
H. J. Wilson, 1985, Impedance Bond
3
S. Kumar, A. Singh, R. Kumar, 2013, Development and Performance Analysis of a Novel Impedance Bond for Railway Track Circuits, IET Electrical Systems in Transportation, pp. 50-55
4
A. Nechifor, A.-M. Dumitrescu, I. Făgărășan, 2022, Transformer Fault Diagnosis Methods Based on Dissolved Gas Analysis: A Review, Sensors
5
Z. Faizol, M. N. Othman, A. A. Bakar, N. A. Wahab, 2023, Detection Method of Partial Discharge on Transformer and Its Locating Technique: A Review, Applied Sciences
6
J. Zhou, Y. Zhang, Y. Huang, F. Liu, 2021, Fault Diagnosis of Track Circuits Based on Time–Frequency Image and CNN, IEEE Sensors Journal, pp. 26928-26939
7
2003, Railway Applications—Environmental Conditions for Equipment—Part 3: Equipment for Signalling and Telecommunications
8
Z. Xing, H. Wu, W. Liang, Q. Chen, 2022, Railway Track Circuit Fault Diagnosis Based on 1D Convolutional Neural Network, pp. 6828-6833
9
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998, Gradient- Based Learning Applied to Document Recognition, pp. 2278-2324
10
S. Hochreiter, J. Schmidhuber, 1997, Long Short-Term Memory, Neural Computation, pp. 1735-1780
11
D. E. Rumelhart, G. E. Hinton, R. J. Williams, 1986, Learning Representations by Back-Propagating Errors, Nature, pp. 533-536
12
X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-C. Woo, 2015, Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting, arXiv preprint
13
D. P. Kingma, J. Ba, 2015, Adam: A Method for Stochastic Optimization, arXiv preprint
14
2025, Simulink (R2025a) — Product Documentation
15
L. Prechelt, 2012, Neural Networks: Tricks of the Trade, pp. 53-67
16
2025, ReduceLROnPlateau — Callback Documentation
17
R. Kohavi, 1995, A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, pp. 1137-1145
18
D. M. W. Powers, 2011, Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation, Journal of Machine Learning Technologies, pp. 37-63
19
T. Fawcett, 2006, An Introduction to ROC Analysis, Pattern Recognition Letters, pp. 861-874
20
T. Saito, M. Rehmsmeier, 2015, The Precision–Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets, PLoS ONE
21
H. He, E. A. Garcia, 2009, Learning from Imbalanced Data, IEEE Transactions on Knowledge and Data Engineering, pp. 1263-1284
22
M. Buda, A. Maki, M. A. Mazurowski, 2018, A Systematic Study of the Class Imbalance Problem in Convolutional Neural Networks, Neural Networks, pp. 249-259