• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
K. B. Lindberg, P. Seljom, H. Madsen, D. Fischer, M. Korpås, 2019, Long-term electricity load forecasting: Current and future trends, Utilities Policy, Vol. 58, pp. 102-119DOI
2 
J. P. Carvallo, P. H. Larsen, A. H. Sanstad, C. A. Goldman, 2018, Long term load forecasting accuracy in electric utility integrated resource planning, Energy Policy, Vol. 119, pp. 410-422DOI
3 
D. Zhang, W. Guan, J. Yang, H. Yu, W. C. Xiao, T. Yu, 2021, Medium-and long-term load forecasting method for group objects based on image, Frontiers in Energy Research, Vol. 9, pp. 739993DOI
4 
A. Mathew, R. Chikte, S. K. Sadanandan, S. Abdelaziz, S. Ijaz, T. Ghaoud, 2024, Medium-term feeder load forecasting and boosting peak accuracy prediction using the PWP-XGBoost model, Electric Power Systems Research, Vol. 237, pp. 111051DOI
5 
F. M. Butt, L. Hussain, S. H. M. Jafri, H. M. Alshahrani, F. N. A. Wesabi, K. J. Lone, E. M. T. E. Din, M. A. Duhayyim, 2022, Intelligence based accurate medium and long term load forecasting system, Applied Artificial Intelligence, Vol. 36, No. 1, pp. 2088452DOI
6 
G. C. Lee, 2024, A regression-based method for monthly electric load forecasting in South Korea, Energies, Vol. 17, No. 23, pp. 5860DOI
7 
S. M. Jung, S. W. Park, S. W. Jung, E. J. Hwang, 2020, Monthly electric load forecasting using transfer learning for smart cities, Sustainability, Vol. 12, No. 16, pp. 6364DOI
8 
D. Liu, K. Sun, H. Huang, P. Tang, 2018, Monthly load forecasting based on economic data by decomposition integration theory, Sustainability, Vol. 10, No. 9, pp. 3282DOI
9 
T. A. Farrag, E. E. Elattar, 2021, Optimized deep stacked long short-term memory network for long-term load forecasting, IEEE Access, Vol. 9, pp. 68511-68522DOI
10 
O. Rubasinghe, X. Zhang, T. K. Chau, Y. H. Chow, T. Fernando, H. H. C. Iu, 2024, A novel sequence to sequence data modelling based CNN-LSTM algorithm for three years ahead monthly peak load forecasting, IEEE Transactions on Power Systems, Vol. 39, No. 1, pp. 1932-1947DOI
11 
S. Nabavi, S. Mohammadi, N. H. Motlagh, S. Tarkoma, P. Geyer, 2024, Deep learning modeling in electricity load forecasting: Improved accuracy by combining DWT and LSTM, Energy Reports, Vol. 12, pp. 2873-2900DOI
12 
H. Peng, Y. Lou, F. Li, H. Sun, R. Liu, B. Jin, Y. Li, 2024, Decomposition framework for long term load forecasting on temperature insensitive area, Energy Reports, Vol. 12, pp. 5783-5792DOI
13 
T. Nyitrai, M. Virág, 2019, The effects of handling outliers on the performance of bankruptcy prediction models, Socio-Economic Planning Sciences, Vol. 67, pp. 34-42DOI
14 
M. Marcellino, J. H. Stock, M. W. Watson, 2004, A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series, Journal of Econometrics, Vol. 120, No. 1, pp. 45-75DOI
15 
S. T. H. Rizvi, N. Kanwal, M. Naeem, A. Cuzzocrea, A. Coronato, 2025, Bridging Simplicity and Sophistication using GLinear: A Novel Architecture for Enhanced Time Series Prediction, Digital Signal ProcessingDOI
16 
Z. Li, S. Qi, Y. Li, Z. Xu, 2023, Revisiting long-term time series forecasting: An investigation on linear mapping, arXiv preprintDOI
17 
P. J. Huber, 1964, Robust estimation of a location parameter, The Annals of Mathematical Statistics, Vol. 35, No. 1, pp. 73-101DOI
18 
S. Kim, H. Kim, 2016, A new metric of absolute percentage error for intermittent demand forecasts, International Journal of Forecasting, Vol. 32, No. 3, pp. 669-679DOI
19 
T. Gneiting, A. E. Raftery, A. H. Westveld III, T. Goldman, 2005, Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, Vol. 133, No. 5, pp. 1098-1118DOI
20 
M. Shrestha, 2017, Bias correction of climate models for hydrological modelling: Are simple methods still useful?, Meteorological Applications, Vol. 24, No. 3, pp. 531-539DOI
21 
A. J. Cannon, 2015, Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?, Journal of Climate, Vol. 28, No. 17, pp. 6938-6959DOI
22 
J. B. Wessel, 2024, Lead-time-continuous statistical postprocessing of ensemble weather forecasts, Quarterly Journal of the Royal Meteorological Society, Vol. 150, pp. 2147-2167DOI