• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
X. Huang, J. Zhang, P. Jiang, 2018, Thermoplastic insulation materials for power cables: History and progress, High Volt. Eng., Vol. 44, No. 5, pp. 1377-1398Google Search
2 
A. S. Alghamdi, R. K. Desuqi, 2020, A study of expected lifetime of XLPE insulation cables working at elevated temperatures by applying accelerated thermal ageing, Heliyon, Vol. 6, No. 1DOI
3 
M. Buhari, V. Levi, S. K. E. Awadallah, 2015, Modelling of ageing distribution cable for replacement planning, IEEE Trans. Power Syst., Vol. 31, No. 5, pp. 3996-4004DOI
4 
C. N. Sanniyati, Y. Z. Arief, Z. Adzis, N. A. Muhamad, M. H. Ahmad, M. A. B. Sidik, K. Y. Lau, 2016, Water tree in polymeric cables: A review, Malays. J. Fundam. Appl. Sci., Vol. 12, No. 1, pp. 12-21DOI
5 
J. S. Lim, 2012, A study on additional judgment factors for VLF tanδ diagnostic criteria, pp. 1-2Google Search
6 
S. Ryu, S. Park, K. Park, M. Lim, S. Jeon, J. Lim, 2024, An approach for evaluating VLF tanδ factor combination for MV cable diagnosis, pp. 1-4Google Search
7 
A. Abideen, F. Mauseth, Ø. L. G. Hestad, H. Faremo, 2022, Review of water treeing in polymeric insulated cables, J. Electr. Eng. Technol., Vol. 17, No. 3, pp. 1234-1245DOI
8 
E. F. Steennis, F. H. Kreuger, 2002, Water treeing in polyethylene cables, IEEE Trans. Electr. Insul., Vol. 25, No. 5, pp. 989-1028DOI
9 
R. Ross, 2002, Inception and propagation mechanisms of water treeing, IEEE Trans. Dielectr. Electr. Insul., Vol. 5, No. 5, pp. 660-680DOI
10 
E. Ildstad, H. Budsen, H. Faremo, B. Knutsen, 1990, Influence of mechanical stress and frequency on water treeing in XLPE cable insulation, pp. 165-168Google Search
11 
L. A. Dissado, S. V. Wolfe, J. C. Fothergill, 1983, A study of the factors influencing water tree growth, IEEE Trans. Electr. Insul., Vol. EI-18, No. 6, pp. 565-585DOI
12 
A. C. Ashcraft, 1977, Factors influencing treeing identified, Electr. World, pp. 38-41Google Search
13 
2005, Power cables with extruded insulation and their accessories for rated voltages from 6 kV to 30 kV – Part 2: Cables for rated voltages from 6 kV to 30 kV, IEC 60502-2:2005Google Search
14 
2001, Guide for Field Testing and Evaluation of the Insulation of Shielded Power Cable Systems, IEEE Std 400-2001Google Search
15 
M. Baur, 1996, Testing and diagnostic with dissipation factor (tanδ) measurement at 0.1 Hz on distribution cables, pp. 1-5Google Search
16 
2024, Guide for Field Testing and Evaluation of the Insulation of Shielded Power Cable Systems, IEEE Std 400-2024Google Search
17 
S. M. Kim, S. G. Kim, N. K. Cho, I. R. Roh, J. Lim, 2015, A numeric estimation of the aging processing of polymeric MV cables applying three dimensional assessment of VLF tanδ, Vol. 15, pp. 1-8Google Search
18 
J. S. Lim, 2012, Apparatus and method for diagnostic medium voltage cable status using the VLF TD measured dataGoogle Search
19 
J. S. Lim, 2014, Apparatus and method for condition diagnosis and predicting remaining life of power cable status using the VLF TD measured dataGoogle Search
20 
J. Lee, W. Jung, S. Kim, J. Lim, 2020, A statistical analysis to the VLF tanδ criteria for aging diagnosis in power cables, J. Electr. Electron. Mater., Vol. 33, No. 1, pp. 1-5Google Search
21 
J. C. Hernandez-Mejia, R. Harley, N. Hampton, R. Hartlein, 2009, Characterization of Ageing for MV Power Cables Using Low Frequency Tan δ Diagnostic Measurements, IEEE Trans. Dielectr. Electr. Insul., Vol. 16, No. 3, pp. 862-870DOI
22 
D. Kim, Y. Cho, S. Kim, 2014, A study on three-dimensional assessment of the aging condition of polymeric medium-voltage cables applying very low frequency (VLF) tan δ diagnostic, IEEE Trans. Dielectr. Electr. Insul., Vol. 21, No. 3, pp. 940-947DOI