• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Y.-K. Mo, 2024, Research on Data Structure and Life Evaluation for Advanced Electrical Facilities Safety Management System, The Transactions of the Korean Institute of Electrical engineers, Vol. 73, No. 11, pp. 2097-2106DOI
2 
C. E. Cho, O. Y. Lee, B. S. Park, 2024, Statistical Life Expectancy Evaluation of MV Cables and Adequacy Review of Early Failure Removal, The Transactions of the Korean Institute of Electrical engineers, Vol. 73, No. 6, pp. 987-994DOI
3 
E. Mustafa, 2026, Thermal degradation and multi-performance aging assessment of low voltage nuclear cable, Electr. Power Syst. Res., Vol. 250DOI
4 
D. S. Kim, Y. S. Cho, S.-M. Kim, 2014, A study on three dimensional assessment of the aging condition of polymeric medium voltage cables applying very low frequency (VLF) tan δ diagnostic, IEEE Trans. Dielectr. Elec. Insul., Vol. 21, No. 3, pp. 940-947DOI
5 
B. Cao, 2024, A state-of-the-art review on insulation condition assessment for vehicle cable terminal in EMUs, IEEE Trans. Transp. Electrif., Vol. 11, No. 1, pp. 2580-2594DOI
6 
Y.-S. Kim, T.-H. Kim, C.-M. Kim, K.-M. Shong, 2016, Analysis of Diagnosis and Very Low Frequency Experiment to Detect of Fault on 22.9kV Class Cable, The Transactions of the Korean Institute of Electrical engineers, Vol. 65, No. 10, pp. 1780-1785DOI
7 
2024, IEEE Std. 400.2-2024, IEEE Guide for Field Testing of Shielded Power Cable Systems Using Very Low Frequency (VLF) (less than 1 Hz)DOI
8 
J.-B. Lee, Y.-H. Jung, 2010, An Amendment of the VLF tanδ Criteria to Improve the Diagnostic Accuracy of the XLPE-insulated Power Cables, The Transactions of the Korean Institute of Electrical engineers, Vol. 59, No. 9, pp. 1644-1651DOI
9 
P. F. Fantoni, 2009, Condition monitoring of electrical cables using line resonance analysis (LIRA), Vol. 43512DOI
10 
P. F. Fantoni, G. J. Toman, 2006, Wire system aging assessment and condition monitoring using line resonance analysis (LIRA), pp. 1-8DOI
11 
Z. Zhou, D. Zhang, J. He, M. Li, 2015, Local degradation diagnosis for cable insulation based on broadband impedance spectroscopy, IEEE Trans. Dielec. Elec. Insul., Vol. 22, No. 4, pp. 2097-2107DOI
12 
Y. Ohki, 2010, Evaluation of broadband impedance spectroscopy on its monitoring ability of cable aging, pp. 92-100DOI
13 
A. Zhang, C. Gao, W. Yang, Z. Zhou, Q. Li, 2019, Propagation coefficient spectrum based locating method for cable insulation degradation, IET Sci. Meas. & Tech., Vol. 13, No. 3, pp. 363-369DOI
14 
S.-J. Chang, G.-Y. Kwon, C.-K. Lee, 2024, Assessment of cable degradation using reflectometry-based dielectric loss estimation, IEEE Trans. Instrum. Meas., Vol. 73DOI
15 
X. Wang, E. Liu, B. Zhang, 2021, Reflectometry-based cable insulation aging diagnosis and prognosis, IEEE Trans. Ind. Electron., Vol. 69, No. 4, pp. 4148-4157DOI
16 
C.-K. Lee, G.-Y. Kwon, Y.-J. Shin, 2018, Condition assessment of I&C cables in nuclear power plants via stepped-frequency waveform reflectometry, IEEE Trans. Instrum. Meas., Vol. 68, No. 1, pp. 215-224DOI
17 
S. Tkatchenko, F. Rachidi, M. Ianoz, 2002, Electromagnetic field coupling to a line of finite length: Theory and fast iterative solutions in frequency and time domains, IEEE Trans. Electromag. Compat., Vol. 37, No. 4, pp. 509-518DOI
18 
S. Morsalin, T. B. Phung, M. Danikas, D. Mawad, 2019, Diagnostic challenges in dielectric loss assessment and interpretation: A review, IET Sci. Meas. & Tech., Vol. 13, No. 6, pp. 767-782DOI